Online Journal of Analytic Combinatorics

ISSN 1931-3365 (online)

The Online Journal of Analytic Combinatorics (OJAC) is a peer-reviewed electronic journal previously hosted by the University of Rochester and now published by Combinatorial Press. OJAC features research articles that span a broad spectrum of topics, including analysis, number theory, and combinatorics, with a focus on the convergence and interplay between these disciplines. The journal particularly welcomes submissions that incorporate one or more of the following elements: combinatorial results derived using analytic methods, analytic results achieved through combinatorial approaches, or a synthesis of combinatorics and analysis in either the methodologies or their applications

Mateus Alegri 1
1Department of Mathematics, DMAI, Federal University of Sergipe,, Itabaiana, Sergipe, Brazil
Abstract:

In this paper we show some identities come from the \( q \)-identities of Euler, Jacobi, Gauss, and Rogers-Ramanujan. Some of these identities relate the function sum of divisors of a positive integer \( n \) and the number of integer partitions of \( n \). One of the most intriguing results found here is given by the next equation, for \( n > 0 \),
\[
\sum_{l=1}^n \frac{1}{l!} \sum_{w_1+w_2+\cdots+w_l \in C(n)} \frac{\sigma_1(w_1) \sigma_1(w_2) \cdots \sigma_1(w_l)}{w_1 w_2 \cdots w_l} = p_1(n),
\]
where \( \sigma_1(n) \) is the sum of all positive divisors of \( n \), \( p_1(n) \) is the number of integer partitions of \( n \), and \( C(n) \) is the set of integer compositions of \( n \). In the last section, we show seven applications, one of them is a series expansion for
\[
\frac{(q^{a_1};q^{b_1})_\infty (q^{a_2};q^{b_2})_\infty \cdots (q^{a_k};q^{b_k})_\infty}
{(q^{c_1};q^{d_1})_\infty (q^{c_2};q^{d_2})_\infty \cdots (q^{c_r};q^{d_r})_\infty},
\]
where \( a_1, \ldots, a_k, b_1, \ldots, b_k, c_1, \ldots, c_r, d_1, \ldots, d_r \) are positive integers, and \( |q| < 1 \).

Dongwei Guo1, Wenchang Chu2
1School of Mathematics and Statistics Zhoukou Normal University Zhoukou (Henan), China
2Department of Mathematics and Physics University of Salento (P. O. Box 193) 73100 Lecce, Italy
Abstract:

Between Bernoulli/Euler polynomials and Pell/Lucas polynomials, convolution sums are evaluated in closed form via the generating function method. Several interesting identities involving Fibonacci and Lucas numbers are shown as consequences including those due to Byrd \( (1975) \) and Frontczak \( (2020) \).

Benjamin Garcia Morales1, Wai Yan Pong1
1California State University Dominguez Hills
Abstract:

The notion of length spectrum for natural numbers was introduced by Pong in \([5]\). In this article, we answer the question of how often one can recover a random number from its length spectrum. We also include a quick deduction of a result of LeVeque in \([4]\) on the average order of the size of length spectra.

Abstract:

This paper uses exponential sum methods to show that if \( E \subset M_2(\mathbb{Z}/p^r) \)
is a finite set of \( 2 \times 2 \) matrices with sufficiently large density and \( j \) is any unit in the finite ring \( \mathbb{Z}/p^r \), then there exist at least two elements of \( E \) whose difference has determinant \( j \).

Mouloud Goubi1
1Department of Mathematics, UMMTO University, 15000 Krim Belkacem, Tizi-Ouzou, Algeria, Laboratory of Algebra and Numbers Theory, USTHB Algiers
Abstract:

In this paper, we introduce a generalized family of numbers and polynomials of one or more variables attached to the formal composition \( f \cdot (g \circ h) \) of generating functions \( f \), \( g \), and \( h \). We give explicit formulae and apply the obtained result to two special families of polynomials; the first concerns the generalization of some polynomials applied to the theory of hyperbolic differential equations recently introduced and studied by \( M. \, Mihoubi \) and \( M. \, Sahari \). The second concerns two-variable Laguerre-based generalized Hermite-Euler polynomials introduced and should be updated to studied recently by \( N. \, U. \, Khan \, \textit{et al.} \).

Emanuele Munarini1
1Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Mi- lano, Italy
Abstract:

In this paper, we show that the generalized exponential polynomials and the generalized Fubini polynomials satisfy certain binomial identities and that these identities characterize the mentioned polynomials (up to an affine transformation of the variable) among the class of the normalized Sheffer sequences.

Katherine Benjamin1
1Mathematical Institute, University of Oxford, Woodstock Road, Oxford, United Kingdom.
Abstract:

Let \( A \) be a subset of a finite field \( \mathbb{F} \). When \( \mathbb{F} \) has prime order, we show that there is an absolute constant \( c > 0 \) such that, if \( A \) is both sum-free and equal to the set of its multiplicative inverses, then \( |A| < (0.25 – c)|\mathbb{F}| + o(|\mathbb{F}|) \) as \( |\mathbb{F}| \to \infty \). We contrast this with the result that such sets exist with size at least \( 0.25|\mathbb{F}| – o(|\mathbb{F}|) \) when \( \mathbb{F} \) has characteristic 2.

Mourad Chelgham1, Ali Boussayoud1, Kasi Viswanadh V. Kanuri 2
1LMAM Laboratory, Mohamed Seddik Ben Yahia University,University, Jijel, Algeria
23669 Leatherwood.Dr. Frisco, TX 75033 USA
Abstract:

In this paper, we will recover the generating functions of Tribonacci numbers and Chebychev polynomials of first and second kind. By making use of the operator defined in this paper, we give some new generating functions for the binary products of Tribonacci with some remarkable numbers and polynomials. The technique used here is based on the theory of the so-called symmetric functions.

Jop Briët1
1CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands
Abstract:

It is shown that if \( V \subseteq \mathbb{F}_p^{n \times \cdots \times n} \) is a subspace of \( d \)-tensors with dimension at least \( tn^{d-1} \), then there is a subspace \( W \subseteq V \) of dimension at least \( t / (dr) – 1 \) whose nonzero elements all have analytic rank \( \Omega_{d, p}(r) \). As an application, we generalize a result of Altman on Szemerédi’s theorem with random differences.

István Mező1, Victor H. Moll2, José Ramírez3, Diego Villamizar2
1School of Mathematics and Statistics, Nanjing University of Information Science and Tech- nology, Nanjing, 210044, P. R. China
2Department of Mathematics, Tulane University, New Orleans, LA 70118
3Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá, Colombia
Abstract:

Extensions of a set partition obtained by imposing bounds on the size of the parts and the coloring of some of the elements are examined. Combinatorial properties and the generating functions of some counting sequences associated with these partitions are established. Connections with Riordan arrays are presented.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;