
Consider the plane as a checkerboard, with each unit square colored black or white in an arbitrary manner. We show that for any such coloring there are straight line segments, of arbitrarily large length, such that the difference of their white length minus their black length, in absolute value, is at least the square root of their length, up to a multiplicative constant. For the corresponding “finite” problem (
Let
where the implied constant is independent of
We study the generating functions for pattern-restricted
We extend an argument of Felix Behrend to show that fairly dense subsets of the integers exist which contain no solution to certain systems of linear equations.
Using combinatorial methods, we derive several formulas for the volume of convex bodies obtained by intersecting a unit hypercube with a halfspace, or with a hyperplane of codimension 1, or with a flat defined by two parallel hyperplanes. We also describe some of the history of these problems, dating to Polya’s Ph.D. thesis, and we discuss several applications of these formulas.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.