On Fractional ID-\((g,f)\)-factor-critical Covered Graphs

Sizhong Zhou1
1School of Science, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, P. R. China
Abstract:

A graph \(G\) is called a fractional ID-\((g,f)\)-factor-critical covered graph if for any independent set \(I\) of \(G\) and for every edge \(e\in E(G-I)\), \(G-I\) has a fractional \((g,f)\)-factor \(h\) such that \(h(e)=1\). We give a sufficient condition using degree condition for a graph to be a fractional ID-\((g,f)\)-factor-critical covered graph. Our main result is an extension of Zhou, Bian and Wu’s previous result [S. Zhou, Q. Bian, J. Wu, A result on fractional ID-\(k\)-factor-critical graphs, Journal of Combinatorial Mathematics and Combinatorial Computing 87(2013)229–236] and Yashima’s previous result [T. Yashima, A
degree condition for graphs to be fractional ID-\([a,b]\)-factor-critical, Australasian Journal of Combinatorics 65(2016)191–199].

M. Saqib Khan1,2, Mujahid Abbas1,3, Absar Ul Haq4, Waqas Nazeer1
1Department of Mathematics, Government College University, Lahore 54000, Pakistan
2Department of Mathematics, Riphah International University-Lahore Campus, Islamabad, Pakistan
3Department of Medical Research, China Medical University, Taichung 40402, Taiwan
4Department of Basic Sciences and Humanities, University of Engineering and Technology, Lahore(NWL Campus), Pakistan
Abstract:

Generally, all the models discussed so far are continuous time models. The continuous time models are quite apt at explaining the phenomena they are trying to predict and have known methods to get information from these type of models. But these models are not accurate for the physical systems which are observed over discreet time periods or which have non-continuous phenomena embedded in them, like production of new generation. Some species like salmon have non-overlapping generation characteristics since they have an annual spawning season and are born each year at a certain time. The discrete models are much more apt in describing the nature’s complex dynamics than the continuous models. A discrete-time modified Leslie-Gower system with double Allee effect is studied in this paper. The stability analysis of interior fixed points is performed. Using center manifold theorem it is shown that the system under consideration exhibits period-doubling and Neimark-Sacker bifurcations. The numerical simulations are provided to illustrate the consistency of the theoretical results.

Abaid ur Rehman Virk1, Muhammad Usman2
1Department of Mathematics, University of Management and Technology, Lahore, Pakistan
2Department of Mathematics, Government College University, Lahore, Pakistan
Abstract:

We investigate the Sombor indices for a diverse group of nonsteroidal anti-inflammatory drugs (NSAIDs) to understand their molecular architecture and physicochemical properties. By utilizing quantitative structure-property relationship (QSPR) modeling, we establish mathematical models linking Sombor indices to key pharmacodynamic and toxicological parameters. Our study sheds light on how the molecular composition of NSAIDs influences their drug profiles and biological behavior, offering valuable insights for drug development and safety assessment.

Arooj Ibrahim1, Saima Nazeer1
1Department of Mathematics, Lahore College for Women University, Lahore-Pakistan
Abstract:

In this paper, the relations of maximum degree energy and maximum reserve degree energy of a complete graph after removing a vertex have been shown to be proportional to the energy of the complete graph. The results of splitting the graph and shadow graphs are also presented for the complete graph after removing a vertex.

Zheng Wang1, Tao She1, Chunxiang Wang1
1School of Mathematics and Statistics, Central China Normal University, Wuhan, P.R. China
Abstract:

Based on the Hermitian adjacency matrices of second kind introduced by Mohar [1] and weighted adjacency matrices introduced in [2], we define a kind of index weighted Hermitian adjacency matrices of mixed graphs. In this paper we characterize the structure of mixed graphs which are cospectral to their underlying graphs, then we determine a upper bound on the spectral radius of mixed graphs with maximum degree \(\Delta\), and characterize the corresponding extremal graphs.

Dinesh G Sarvate1, Somnuek Worawiset2, Li Zhang3
1Department of Mathematics, College of Charleston, Charleston, SC USA
2Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
3Department of Mathematical Sciences, The Citadel Charleston, SC USA
Abstract:

Modified group divisible designs MGD\((k, \lambda, m, n)\) are extensively studied because of an intriguing combinatorial structure that they possess and their applications. In this paper, we present a generalization of MGDs called GMGD\((k, \lambda_1, \lambda_2, m, n)\), and we provide some elementary results and constructions of some special cases of GMGDs. In addition, we show that the necessary conditions are sufficient for the existence of a GMGD\((3, \lambda, 2\lambda, m, n)\) for any positive integer \(\lambda\), and a GMGD\((3, 2, 3, m, n)\). Though not a general result, the construction of a GMGD\((3, 3, 2, 2, 6)\) given in the paper is worth mentioning in the abstract. Along with another example of a GMGD\((3, 3, 2, 2, 4)\), and \(n\) to \(tn\) construction, we have families of GMGD\((3, 3\lambda, 2\lambda, 2, n)\)s for \(n = 4t\) or \(6t\) when \(t \equiv 0, 1 \pmod 3\), for any positive integer \(\lambda\).

Adem ŞAHIN1
1Faculty of Education, Tokat Gaziosmanpa\c{s}a University, 60250 Tokat, Turkey
Abstract:

In this article, we define \(q\)-generalized Fibonacci polynomials and \(q\)-generalized Lucas polynomials using \(q\)-binomial coefficient and obtain their recursive properties. In addition, we introduce generalized \(q\)-Fibonacci matrix and generalized \(q\)-Lucas matrix, then we derive their basic identities. We define \((k,q,t)\)-symmetric generalized Fibonacci matrix and \((k,q,t)\)-symmetric generalized Lucas matrix, then we give the Cholesky factorization of these matrices. Finally, we give determinantal and permanental representations of these new polynomial sequences.

Ryan C. Bunge1, Dalibor Froncek2, Andrew Sailstad3
1Department of Mathematics, Illinois State University, USA
2Department of Mathematics and Statistics, University of Minnesota Duluth, USA
3School of Mathematics, University of Minnesota, Twin Cities, USA
Abstract:

We show that connected, bicyclic graphs on nine edges with at least one cycle other than \(C_3\) decompose the complete graphs \(K_{18k}\) and \(K_{18k+1}\), for \(k\geq1\), when the necessary conditions allow for such a decomposition. This complements previous results by Freyberg, Froncek, Jeffries, Jensen, and Sailstad on connected bicyclic triangular graphs.

Niat Nigar1, Sajid Mahboob Alam1, Muhammad Waheed Rasheed2, Mohammad Reza Farahani3, Mehdi Alaeiyan3, Murat Cancan4
1Department of Mathematics, Minhaj University, Lahore, Pakistan
2Department of Mathematics, Division of Science and Technology, University of Education, Lahore, Pakistan
3Department of Mathematics and Computer Science, Iran University of Science and Technology(IUST), Narmak, Tehran, 16844, Iran
4Faculty of Education, Van Yuzuncu Yl University, Zeve Campus, Tuba, 65080, Van, Turkey
Abstract:

In the realm of graph theory, recent developments have introduced novel concepts, notably the \(\nu\varepsilon\)-degree and \(\varepsilon\nu\)-degree, offering expedited computations compared to traditional degree-based topological indices (TIs). These TIs serve as indispensable molecular descriptors for assessing chemical compound characteristics. This manuscript aims to meticulously compute a spectrum of TIs for silicon carbide \(SiC_{4}\)-\(I[r,s]\), with a specific focus on the \(\varepsilon\nu\)-degree Zagreb index, the \(\nu\varepsilon\)-degree Geometric-Arithmetic index, the \(\varepsilon\nu\)-degree Randić index, the \(\nu\varepsilon\)-degree Atom-bond connectivity index, the \(\nu\varepsilon\)-degree Harmonic index, and the \(\nu\varepsilon\)-degree Sum connectivity index. This study contributes to the ongoing advancement of graph theory applications in chemical compound analysis, elucidating the nuanced structural properties inherent in silicon carbide molecules.

Muhammad Saqlain Zakir1, Muhammad Kamran Naseer2, Muhammad Reza Farahani3, Irfan Ahmad2, Zarqa Kanwal2, Mehdi Alaeiyan3, Murat Cancan4
1Department of Mathematics, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, 57000, Pakistan
2Department of Mathematics, Lahore Leads University, Lahore, Pakistan
3Department of Mathematics and Computer Science, In University of Science and Technology (IUST), Narmak, Tehran, 16844, Iran
4Faculty of Education, Van Yuzuncu Yıl University, Zeve Campus, Tuşba, 65080, Van, Turkey
Abstract:

Graph theory has experienced notable growth due to its foundational role in applied mathematics and computer science, influencing fields like combinatorial optimization, biochemistry, physics, electrical engineering (particularly in communication networks and coding theory), and operational research (with scheduling applications). This paper focuses on computing topological properties, especially in molecular structures, with a specific emphasis on the nanotube \(HAC_{5}C_{7}[w,t]\).