R. G. Stanton1
1Department of Computer Science University of Manitoba Winnipeg, Canada R3T 2N2
Abstract:

The minimum cardinality of a pairwise balanced design on nineteen points is determined; a minimal design is exhibited containing \(13\) triples and \(22\) quadruples.

Martin J. SHARRY1, ANNE PENFOLD STREET1
1Department of Mathematics University of Queensland St.Lucia, Queensland 4067 AUSTRALIA
Abstract:

It is shown that the collection of all the \(\dbinom{10}{3}\) triples chosen from a set of ten points can be partitioned into ten mutually disjoint \(2-(9,3,1)\) designs in precisely \(77\) non-isomorphic ways.

STANISLAW P. RADZISZOWSKI1, DONALD L. KREHER1
1School of Computer Science and Technology Rochester Institute of Technology Rochester, NY 14623
Abstract:

A \((3,k,n,e)\) Ramsey graph is a triangle-free graph on \(n\) vertices with \(e\) edges and no independent set of size \(k\). Similarly, a \((3,k)\)-, \((3,k,n)\)-, or \((3,k,n,e)\)-graph is a \((3,k,n,e)\) Ramsey graph for some \(n\) and \(e\). In the first part of the paper, we derive an explicit formula for the minimum number of edges in any \((3,k,n)\)-graph for \(n\leq3(k-1)\), i.e., a partial formula for the function \(e(3,k,n)\) investigated in \([3,5,7]\). We prove some general properties of minimum \((3,k,n)\)-graphs with \(e(3,k,n)\) edges and present a construction of minimum \((3,k+1,3k-1,5k-5)\)-graphs for \(k\geq2\) and minimum \((3,k+1,3k,5k)\)-graphs for \(k\geq4\). In the second part of the paper, we describe a catalogue of small Ramsey graphs: all \((3,k)\)-graphs for \(k\leq6\) and some \((3,7)\)-graphs, including all \(191 (3,7,22)\)-graphs, produced by a computer. We present for \(k\leq7\) all minimum \((3,k,n)\)-graphs and all \(10\) maximum \((3,7,22)\)-graphs with \(66\) edges.

M. D. Atkinson1, D. Nussbaum1
1School of Computer Science, Carleton University Ottawa, Canada K1S 5B6
Abstract:

The cost of a sorting algorithm is the number of primitive operations used in a worst-case execution of the algorithm. In the standard model, the primitive operation is a binary comparison, which sorts a pair of keys. Cost measures based on other primitive operations are considered. A general lower bound for the cost of a sorting algorithm is given, which is valid for a wide class of possible primitives. For several special primitive operations, sorting algorithms are given. The primitive operations studied are: sorting \(k\) keys, finding the largest among \(k\) keys, and merging lists of lengths \(i,j\).

Edward J. Green1, Rolf Rees1
1Department of Mathematics and Computer Science Mount Allison University Sackville, New Brunswick CANADA
Abstract:

Hartman and Rosa have shown that the complete graph \(K_{2n}\) has an acyclic one-factorization if and only if \(n\) is not a power of \(2\) exceeding \(2\). Here, we consider the following problem: for which \(n > 0\) and \(0 < k < \frac{n}{2}\) does the complete graph \(K_n\) admit a cyclic decomposition into matchings of size \(k\)? We give a complete solution to this problem and apply it to obtain a new class of perfect coverings.

W. D. Goddard1, Henda C. Swart1
1Department of Mathematics, University of Natal King George V Avenue, 4001 Durban Republic of South Africa
Abstract:

The integrity of a graph \(G\), denoted \(I(G)\), is defined by \(I(G) := \min_{S \subset V(G)} \{|S| + m(G – S)\}\), where \(m(G – S)\) denotes the maximum order of a component of \(G – S\). In this paper, we explore the integrity of various combinations of graphs in terms of the integrity and other graphical parameters of the constituent graphs. Specifically, explicit formulae and/or bounds are derived for the integrity of the join, union, cartesian and lexicographic products of two graphs. Also, some results on the integrity of powers of graphs are given.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;