Heiko Harborth1, Glenn Hurlbert1
1Diskrete Mathematik Department of Mathematics Technische Universitat Braunschweig and Statistics 38023 Braunschweig Arizona State University Germany Tempe, Arizona 85287-1804 USA
Abstract:

This paper answers the question as to whether every natural number \( n \) is realizable as the number of ones in the top portion of rows of a general binary Pascal triangle. Moreover, the minimum number \( \kappa(n) \) of rows is determined so that \( n \) is realizable.

Sin-Min Lee1, Ling Wang1, Ken Nowak2, Wandi Wei3
1Department of Computer Science San Jose State University San Jose, California 95192 U.S.A.
2Department of Civil Engineering San Jose State University San Jose, California 95192 U.S.A.
3Center for Cryptology and Information Security Florida Atlantic University, – Boca Raton, FL33431
Abstract:

A \( (p,q) \)-graph \( G \) is said to be \textbf{edge-graceful} if the edges can be labeled by \( 1,2,\ldots, q \) so that the vertex sums are distinct, mod \( p \). It is shown that if a tree \( T \) is edge-graceful, then its order must be odd. Lee conjectured that all trees of odd orders are edge-graceful. The conjecture is still unsettled. In this paper, we give the state of the progress toward this tantalizing conjecture.

Tereza Kovaitova1
1 Department of Mathematics and Statistics University of Minnesota Duluth, MN 55812 Department of Mathematics and Descriptive Geometry Technical University Ostrava, 708 33, Czech Republic
Abstract:

We use a new technique for decomposition of complete graphs with even number of vertices based on \( 2n \)-cyclic blended labeling to show that for every \( k > 1 \) odd, and every \( d \), \( 3 \leq d \leq 2^qk – 1 \), there exists a spanning tree of diameter \( d \) that factorizes \( K_{2^qk} \).

Wensong Chu1, Charles J. Colbourn1, Peter Dukes2
1Department of Computer Science and Engineering Arizona State University Tempe, AZ 85287-5406
2Department of Mathematics University of Toronto Toronto, Ontario CANADA M58 3G3
Abstract:

A constant composition code of length \( n \) over a \( k \)-ary alphabet has the property that the numbers of occurrences of the \( k \) symbols within a codeword is the same for each codeword. These specialize to constant weight codes in the binary case, and permutation codes in the case that each symbol occurs exactly once. Constant composition codes arise in powerline communication and balanced scheduling, and are used in the construction of permutation codes. Using exhaustive and probabilistic clique search, and by applying theorems and constructions in past literature, we generate tables which summarize the best known lower bounds on constant composition codes for (i) \( 3 \leq k \leq 8 \), (ii) \( k = 3 \), \( 9 \leq n \leq 12 \), and (iii) various other interesting parameters with \( n \geq 9 \).

Kimberly A. Lauinger1, Donald L. Kreher1, Rolf Rees2, D. R. Stinson3
1Department of Mathematical Sciences Michigan Technological University Houghton, MI 49931-1295, USA
2Department of Mathematics and Statistics Memorial University of Newfoundland St. John’s, Newfoundland A1C 587, Canada
3School of Computer Science University of Waterloo Waterloo, Ontario N2L 3G1, Canada
Abstract:

In this paper, we develop a computational method for constructing transverse \( t \)-designs. An algorithm is presented that computes the \( G \)-orbits of \( k \)-element subsets transverse to a partition \( \mathcal{H} \), given that an automorphism group \( G \) is provided. We then use this method to investigate transverse Steiner quadruple systems. We also develop recursive constructions for transverse Steiner quadruple systems, and we provide a table of existence results for these designs when the number of points \( v \leq 24 \). Finally, some results on transverse \( t \)-designs with \( t > 3 \) are also presented.

Petr Kovai1
1Department of Mathematics and Statistics University of MN Duluth, Minnesota 55812, USA Department of Mathematics and Descriptive Geometry Technical University Ostrava, 708 33, Czech Republic
Abstract:

A vertex-magic total labeling of a graph \( G(V, E) \) is defined as a one-to-one mapping from \( V \cup E \) to the set of integers \( \{1,2,\ldots,|V| + |E|\} \) with the property that the sum of the label of a vertex and the labels of all edges incident to this vertex is the same constant for all vertices of the graph. A supermagic labeling of a graph \( G(V, E) \) is defined as a one-to-one mapping from \( E \) to the set of integers \( \{1, 2,\ldots,|E|\} \) with the property that the sum of the labels of all edges incident to a vertex is the same constant for all vertices of the graph.

In this paper, we present a technique for constructing vertex-magic total labelings of products of certain vertex-magic total \( r \)-regular graphs \( G \) and certain \( 2_s \)-regular supermagic graphs \( H \). \( H \) has to be decomposable into two \( s \)-regular factors and if \( r \) is even, \( |H| \) has to be odd.

John Martino1, Paula Smith2
1Western Michigan University
2Ohio Dominican University
Abstract:

At each vertex in a Cayley map, the darts emanating from that vertex are labeled by a generating set of a group. This generating set is closed under inverses. Two classes of Cayley maps are balanced and antibalanced maps. For these cases, the distributions of the inverses about the vertex are well understood. For a balanced Cayley map, either all the generators are involutions or each generator is directly opposite across the vertex from its inverse. For an antibalanced Cayley map, there is a line of reflection in the tangent plane of the vertex so that the inverse generator for each dart label is symmetric across that line. An \( e \)-balanced Cayley map is a recent generalization that has received much study, see for example [2, 6, 7, 13]. In this note, we examine the symmetries of the inverse distributions of \( e \)-balanced maps in a manner analogous to those of balanced and antibalanced maps.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;