Abstract:

This paper uses exponential sum methods to show that if \( E \subset M_2(\mathbb{Z}/p^r) \)
is a finite set of \( 2 \times 2 \) matrices with sufficiently large density and \( j \) is any unit in the finite ring \( \mathbb{Z}/p^r \), then there exist at least two elements of \( E \) whose difference has determinant \( j \).

Mouloud Goubi1
1Department of Mathematics, UMMTO University, 15000 Krim Belkacem, Tizi-Ouzou, Algeria, Laboratory of Algebra and Numbers Theory, USTHB Algiers
Abstract:

In this paper, we introduce a generalized family of numbers and polynomials of one or more variables attached to the formal composition \( f \cdot (g \circ h) \) of generating functions \( f \), \( g \), and \( h \). We give explicit formulae and apply the obtained result to two special families of polynomials; the first concerns the generalization of some polynomials applied to the theory of hyperbolic differential equations recently introduced and studied by \( M. \, Mihoubi \) and \( M. \, Sahari \). The second concerns two-variable Laguerre-based generalized Hermite-Euler polynomials introduced and should be updated to studied recently by \( N. \, U. \, Khan \, \textit{et al.} \).

Emanuele Munarini1
1Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Mi- lano, Italy
Abstract:

In this paper, we show that the generalized exponential polynomials and the generalized Fubini polynomials satisfy certain binomial identities and that these identities characterize the mentioned polynomials (up to an affine transformation of the variable) among the class of the normalized Sheffer sequences.

Katherine Benjamin1
1Mathematical Institute, University of Oxford, Woodstock Road, Oxford, United Kingdom.
Abstract:

Let \( A \) be a subset of a finite field \( \mathbb{F} \). When \( \mathbb{F} \) has prime order, we show that there is an absolute constant \( c > 0 \) such that, if \( A \) is both sum-free and equal to the set of its multiplicative inverses, then \( |A| < (0.25 – c)|\mathbb{F}| + o(|\mathbb{F}|) \) as \( |\mathbb{F}| \to \infty \). We contrast this with the result that such sets exist with size at least \( 0.25|\mathbb{F}| – o(|\mathbb{F}|) \) when \( \mathbb{F} \) has characteristic 2.

Mourad Chelgham1, Ali Boussayoud1, Kasi Viswanadh V. Kanuri 2
1LMAM Laboratory, Mohamed Seddik Ben Yahia University,University, Jijel, Algeria
23669 Leatherwood.Dr. Frisco, TX 75033 USA
Abstract:

In this paper, we will recover the generating functions of Tribonacci numbers and Chebychev polynomials of first and second kind. By making use of the operator defined in this paper, we give some new generating functions for the binary products of Tribonacci with some remarkable numbers and polynomials. The technique used here is based on the theory of the so-called symmetric functions.

Jop Briët1
1CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands
Abstract:

It is shown that if \( V \subseteq \mathbb{F}_p^{n \times \cdots \times n} \) is a subspace of \( d \)-tensors with dimension at least \( tn^{d-1} \), then there is a subspace \( W \subseteq V \) of dimension at least \( t / (dr) – 1 \) whose nonzero elements all have analytic rank \( \Omega_{d, p}(r) \). As an application, we generalize a result of Altman on Szemerédi’s theorem with random differences.

István Mező1, Victor H. Moll2, José Ramírez3, Diego Villamizar2
1School of Mathematics and Statistics, Nanjing University of Information Science and Tech- nology, Nanjing, 210044, P. R. China
2Department of Mathematics, Tulane University, New Orleans, LA 70118
3Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá, Colombia
Abstract:

Extensions of a set partition obtained by imposing bounds on the size of the parts and the coloring of some of the elements are examined. Combinatorial properties and the generating functions of some counting sequences associated with these partitions are established. Connections with Riordan arrays are presented.

Abstract:

Every set of natural numbers determines a generating function convergent for \( q \in (-1, 1) \) whose behavior as \( q \to 1^- \) determines a germ. These germs admit a natural partial ordering that can be used to compare sets of natural numbers in a manner that generalizes both cardinality of finite sets and density of infinite sets. For any finite set \( D \) of positive integers, call a set \( S \) “\( D \)-avoiding” if no two elements of \( S \) differ by an element of \( D \). We study the problem of determining, for fixed \( D \), all \( D \)- avoiding sets that are maximal in the germ order. In many cases, we can show that there is exactly one such set. We apply this to the study of one-dimensional packing problems.

Sung Sik U1, Kyu Song Chae1
1Faculty of Mathematics, Kim Il Sung University, Pyongyang, Democratic People’s Republic of Korea
Abstract:

We prove some combinatorial identities by an analytic method. We use the property that singular integrals of particular functions include binomial coefficients. In this paper, we prove combinatorial identities from the fact that two results of the particular function calculated as two ways using the residue theorem in the complex function theory are the same. These combinatorial identities are the generalization of a combinatorial identity that has been already obtained

Aubrey Blecher1, Charlotte Brennan1, Arnold Knopfmacher1
1The John Knopfmacher Centre for Applicable Analysis and Number Theory, School of Math- ematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
Abstract:

Bargraphs are column convex polyominoes, where the lower edge lies on a horizontal axis. We consider the inner site-perimeter, which is the total number of cells inside the bargraph that have at least one edge in common with an outside cell and obtain the generating function that counts this statistic. From this we find the average inner perimeter and the asymptotic expression for this average as the semi-perimeter tends to infinity. We finally consider those bargraphs where the inner site-perimeter is exactly equal to the area of the bargraph.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;