Bert L. Hartnell1, Douglas F. Rall2
1 Department of Mathematics and Computing Science Saint Mary’s University Halifax, Nova Scotia Canada B3H 3C3
2Department of Mathematics Furman University Greenville, South Carolina 29613 U.S.A.
Abstract:

For any tree \(T\), let \(\gamma(T)\) represent the size of a minimum dominating set. Let \({E}_0\) represent the collection of trees with the property that, regardless of the choice of edge \(e\) belonging to the tree \(T\), \(\gamma(T – e) = \gamma(T)\). We present a constructive characterization of \({E}_0\).

R. Craigen 1
1Dept. of Mathematics University of Lethbridge Lethbridge, AB Canada T1K 3M4
Abstract:

A procedure based on the Kronecker product yields \(\pm 1\)-matrices \(X,Y\) of order \(8mn\), satisfying
\(XX^t + YY^t = 8mnI \quad {and} \quad XY^t = YX^t = 0,\)
given Hadamard matrices of orders \(4m\) and \(4n\). This allows the construction of some infinite classes of Hadamard matrices – and in particular orders \(8mnp\), for values of \(p\) including (for \(j \geq 0\)) \(5, 9^j, 25, 9^j, \), improving the usual Kronecker product construction by at least a factor of \(2\). A related construction gives Hadamard matrices in orders \(4 \cdot 5^i \cdot 9^j, 0 \leq i \leq 4\). To this end we introduce some disjoint weighing matrices and exploit certain Williamson matrices studied by Turyn and Xia. Some new constructions are given for symmetric and skew weighing matrices, resolving the case of skew \(W(N, 16)\) for \(N = 30, 34, 38\).

L.J. Cummings1, M.E. Mays2
1University of Waterloo Waterloo, Ontario Canada N2L 3G1
2 West Virginia University Morgantown, West Virginia U.S.A. 26506
Abstract:

The set of Lyndon words of length \(N\) is obtained by choosing those strings of length \(n\) over a finite alphabet which are lexicographically least in the aperiodic equivalence classes determined by cyclic permutation. We prove that interleaving two Lyndon words of length \(n\) produces a Lyndon word of length \(2n\). For the binary alphabet \(\{0, 1\}\) we represent the set of Lyndon words of length \(n\) as vertices of the \(n\)-cube. It is known that the set of Lyndon words of length \(n\) form a connected subset of the \(n\)-cube. A path of vertices in the \(n\)-cube is a list of strings of length \(n\) in which adjacent strings differ in a single bit. Using paths of Lyndon words in the \(n\)-cube we construct longer paths of Lyndon words in higher order cubes by shuffling and concatenation.

A.M. Assaf1, W.H. Mills2, R.C. Mullin3
1 Central Michigan University
2Institute for Defense Analyses
3 University of Waterloo
Abstract:

A tricover of pairs by quintuples of a \(v\)-set \(V\) is a family of \(5\)-subsets of \(V\) (called blocks) with the property that every pair of distinct elements from \(V\) occurs in at least three blocks. If no other such tricover has fewer blocks, the tricover is said to be minimum, and the number of blocks in a minimum tricover is the covering number \(C_3(v, 5, 2)\), or simply \(C_3(v)\). It is well known that\(C_3(v) \geq \lceil \frac{{v} \lceil \frac {3(v-1)}{4} \rceil} {5} \rceil = B_3(v)\) , where \(\lceil x \rceil\) is the least integer not less than \(x\). It is shown here that if \(v \equiv 0 \pmod{4}\) and \(v \geq 8\), then \(C_3(v) = B_3(v)\).

Kishore Sinha1, A. D. Das2, Sanpei Kageyama3
1Department of Statistics Birsa Agricultural University Ranchi – 834006, India
2Department of Statistics Bidhan Chandra Krishi Vishwavidyalaya Cooch-Behar – 736101, India
3Department of Mathematics Hiroshima University Shinonome, Hiroshima 734, Japan
Abstract:

The concept of rectangular designs with varying replicates is introduced. A class of such designs is constructed with an example.

Yukio Shibata1, Yasuo Seki2
1 Department of Computer Science Gunma University 1-5-1 Tenjin-cho, Kiryu, Gunma 376 Japan
2NTT Corporation 66-2 Horikawa-cho, Saiwaiku, Kawasaki, Kanagawa, 210 Japan
Abstract:

We study the isomorphic factorization of complete bipartite graphs into trees. It is known that for complete bipartite graphs, the divisibility condition is also a sufficient condition for the existence of isomorphic factorization. We give necessary and sufficient conditions for the divisibility, that is, necessary and sufficient conditions for a pair \([m,n]\) such that \(mn\) is divisible by \((m+n-1)\), and investigate structures of the set of pairs \([m,n]\) satisfying divisibility. Then we prove that the divisibility condition is also sufficient for the existence of an isomorphic tree factor of a complete bipartite graph by constructing the tree dividing \(K({m,n})\).

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;