We classify the geometric hyperplanes of the Segre geometries, that is, direct products of two projective spaces. In order to do so, we use the concept of a generalised duality. We apply the classification to Segre varieties and determine precisely which geometric hyperplanes are induced by hyperplanes of the ambient projective space. As a consequence we find that all geometric hyperplanes are induced by hyperplanes of the ambient projective space if, and only if, the underlying field has order \(2\) or \(3\).
A modification of Merino-Mǐcka-Mütze’s solution to a combinatorial generation problem of Knuth is proposed in this survey. The resulting alternate form to such solution is compatible with a reinterpretation by the author of a proof of existence of Hamilton cycles in the middle-levels graphs. Such reinterpretation is given in terms of a dihedral quotient graph associated to each middle-levels graph. The vertices of such quotient graph represent Dyck words and their associated ordered trees. Those Dyck words are linearly ordered via a rooted tree that covers all their tight, or irreducible, forms, offering an universal reference point of view to express and integrate the periodic paths, or blocks, whose concatenation leads to Hamilton cycles resulting from the said solution.
The hub cover pebbling number, \(h^{*}(G)\), of a graph $G$, is the least non-negative integer such that from all distributions of \(h^{*}(G)\) pebbles over the vertices of \(G\), it is possible to place at least one pebble each on every vertex of a set of vertices of a hub set for \(G\) using a sequence of pebbling move operations, each pebbling move operation removes two pebbles from a vertex and places one pebble on an adjacent vertex. Here we compute the hub cover pebbling number for wheel related graphs.
An outer independent double Roman dominating function (OIDRDF) on a graph \( G \) is a function \( f : V(G) \to \{0, 1, 2, 3\} \) having the property that (i) if \( f(v) = 0 \), then the vertex \( v \) must have at least two neighbors assigned 2 under \( f \) or one neighbor \( w \) with \( f(w) = 3 \), and if \( f(v) = 1 \), then the vertex \( v \) must have at least one neighbor \( w \) with \( f(w) \ge 2 \) and (ii) the subgraph induced by the vertices assigned 0 under \( f \) is edgeless. The weight of an OIDRDF is the sum of its function values over all vertices, and the outer independent double Roman domination number \( \gamma_{oidR}(G) \) is the minimum weight of an OIDRDF on \( G \). The \( \gamma_{oidR} \)-stability (\( \gamma^-_{oidR} \)-stability, \( \gamma^+_{oidR} \)-stability) of \( G \), denoted by \( {\rm st}_{\gamma_{oidR}}(G) \) (\( {\rm st}^-_{\gamma_{oidR}}(G) \), \( {\rm st}^+_{\gamma_{oidR}}(G) \)), is defined as the minimum size of a set of vertices whose removal changes (decreases, increases) the outer independent double Roman domination number. In this paper, we determine the exact values on the \( \gamma_{oidR} \)-stability of some special classes of graphs, and present some bounds on \( {\rm st}_{\gamma_{oidR}}(G) \). In addition, for a tree \( T \) with maximum degree \( \Delta \), we show that \( {\rm st}_{\gamma_{oidR}}(T) = 1 \) and \( {\rm st}^-_{\gamma_{oidR}}(T) \le \Delta \), and characterize the trees that achieve the upper bound.
We introduce a two-player game where the goal is to illuminate all edges of a graph. At each step the first player, called Illuminator, taps a vertex. The second player, called Adversary, reveals the edges incident with that vertex (consistent with the edges incident with the already tapped vertices). Illuminator tries to minimize the taps needed, and the value of the game is the number of taps needed with optimal play. We provide bounds on the value in trees and general graphs. In particular, we show that the value for the path on \( n \) vertices is \( \frac{2}{3} n + O(1) \), and there is a constant \( \varepsilon > 0 \) such that for every caterpillar on \( n \) vertices, the value is at most \( (1 – \varepsilon) n + 1 \).
Let \(G\) be a group, and let \(c\in\mathbb{Z}^+\cup\{\infty\}\). We let \(\sigma_c(G)\) be the maximal size of a subset \(X\) of \(G\) such that, for any distinct \(x_1,x_2\in X\), the group \(\langle x_1,x_2\rangle\) is not \(c\)-nilpotent; similarly we let \(\Sigma_c(G)\) be the smallest number of \(c\)-nilpotent subgroups of \(G\) whose union is equal to \(G\). In this note we study \(D_{2k}\), the dihedral group of order \(2k\). We calculate \(\sigma_c(D_{2k})\) and \(\Sigma_c(D_{2k})\), and we show that these two numbers coincide for any given \(c\) and \(k\).
Let \(p > 2\) be prime and \(r \in \{1,2, \ldots, p-1\}\). Denote by \(c_{p}(n)\) the number of \(p\)-regular partitions of \(n\) in which parts can occur not more than three times. We prove the following: If \(8r + 1\) is a quadratic non-residue modulo \(p\), \(c_{p}(pn + r) \equiv 0 \pmod{2}\) for all nonnegative integers \(n\).