Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

S.M. Khamis1, Kh.M. Nazzal1
1Department of Mathematics, Faculty of Science, Ain Shams University, Abbaseia, Cairo, Egypt.
Abstract:

In this paper, we investigate the existence of nontrivial solutions for the equation \(y(G \Box H) – \gamma(G) \gamma(H)\) fixing one factor. For the complete bipartite graphs \(K_{m,n}\), we characterize all nontrivial solutions when \(m = 2, n \geq 3\) and prove the nonexistence of solutions when \(m \geq 2, n \leq 3\). In addition, it is proved that the above equation has no nontrivial solution if \(A\) is one of the graphs obtained from \(G\), the cycle of length \(n\), either by adding a vertex and one pendant edge joining this vertex to any vertex to any \(v\in V(C_n)\), or by adding one chord joining two alternating vertices of \(C_n\).

Yinghong Ma1,2, Qinglin Yu1,3
1Center for Combinatorics, LPMC, Nankai University Tianjing, China
2School of Management Shandong Normal University, Jinan, Shandong, China
3Department of Mathematics and Statistics Thompson Rivers University, Kamloops, BC, Canada
Abstract:

For a graph \(G = (V(G), E(G))\), let \(i(G)\) be the number of isolated vertices in \(G\). The isolated toughness of \(G\) is defined as
\(I(G) = \min\left\{\frac{|S|}{i(G-S)}: S \subseteq V(G), i(G-S) \geq 2\right\}\) if \(G\) is not complete; \(I(G) = |V(G)|-1\) otherwise. In this paper, several sufficient conditions in terms of isolated toughness are obtained for the existence of \([a, b]\)-factors avoiding given subgraphs, e.g., a set of vertices, a set of edges and a matching, respectively.

KM. Kathiresan1, G. Marimuthu1
1Centre for Research and Post Graduate Studies in Mathematics, Ayya Nadar Janaki Ammal College, [Autonomous], Sivakasi- 626 124,Tamil Nadu, India.
Abstract:

In a graph \(G\), the distance \(d(u,v)\) between a pair of vertices \(u\) and \(v\) is the length of a shortest path joining them. The eccentricity \(e(u)\) of a vertex \(u\) is the distance to a vertex farthest from \(u\). The minimum eccentricity is called the radius of the graph and the maximum eccentricity is called the diameter of the graph. The radial graph \(R(G)\) based on \(G\) has the vertex set as in \(G\). Two vertices \(u\) and \(v\) are adjacent in \(R(G)\) if the distance between them in \(G\) is equal to the radius of \(G\). If \(G\) is disconnected, then two vertices are adjacent in \(R(G)\) if they belong to different components. The main objective of this paper is to find a necessary and sufficient condition for a graph to be a radial graph.

A. Drapal1, T.S. Griggs2
1Faculty of Mathematics and Physics Charles University Sokolovska 83 186 75 Praha 8 CZECH REPUBLIC
2Department of Mathematics and Statistics The Open University Walton Hall Milton Keynes MK7 6AA UNITED KINGDOM
Abstract:

Let \(\{T, T’\}\) be a Latin bitrade. Then \(T\) (and \(T’\)) is said to be \((r,c,e)\)-homogeneous if each row contains precisely \(r\) entries, each column contains precisely \(c\) entries, and each entry occurs precisely \(e\) times. An \((r,c,e)\)-homogeneous Latin bitrade can be embedded on the torus only for three parameter sets, namely \((r,c,e) = (3,3,3), (4,4,2)\), or \((6,3,2)\). The first case has been completely classified by a number of authors. We present classifications for the other two cases.

Michael Aristidou1
1Barry University, Department of Mathematics and Comp. Science 11300 NE 2nd Avenue, Miami Shores, FL 33161
Abstract:

In this paper, we prove an interesting property of rook polynomials for \(2\)-D square boards and extend that for rook polynomials for \(3\)-D cubic, and \(r\)-D “hypercubic” boards. In particular, we prove that for \(r\)-D rook polynomials the modulus of the sum of their roots equals their degree. We end with some further questions, mainly for the \(2\)-D and \(3\)-D case, that could serve as future projects.

Guohui Hao1, Qingde Kang1
1Institute of Math., Hebei Normal University Shijiazhuang 050016, P.R. China
Abstract:

Let \(G\) be a finite graph and \(H\) be a subgraph of \(G\). If \(V(H) = V(G)\), then the subgraph \(H\) is called a \({spanning \;subgraph}\) of \(G\). A spanning subgraph \(H\) of \(G\) is called an \({F-factor}\) if each component of \(H\) is isomorphic to \(F\). Further, if there exists a subgraph of \(G\) whose vertex set is \(\lambda V(G)\) and can be partitioned into \(F\)-factors, then it is called a \({\lambda-fold \;F-factor}\) of \(G\), denoted by \(S_\lambda(1,F,G)\). A \({large \; set}\) of \(\lambda\)-fold \(F\)-factors in \(G\) is a partition \(\{\mathcal{B}_i\}_{i}\) of all subgraphs of \(G\) isomorphic to \(F\), such that each \((X, \mathcal{B}_i)\) forms a \(\lambda\)-fold \(F\)-factor of \(G\). In this paper, we investigate the large set of \(\lambda\)-fold \(P_3\)-factors in \(K_{v,v}\) and obtain its existence spectrum.

Kotaro Hayashi1
1Honda R&D Co.,Ltd. Motorcycle R&D Center 3-15-1 Senzui, Asaka-shi, Saitama, 351-8555 Japan
Abstract:

Let \(k \geq 1\), \(l \geq 3\), and \(s \geq 5\) be integers. In \(1990\), Erdős and Faudree conjectured that if \(G\) is a graph of order \(4k\) with \(\delta(G) \geq 2k\), then \(G\) contains \(k\) vertex-disjoint \(4\)-cycles. In this paper, we consider an analogous question for \(5\)-cycles; that is to say, if \(G\) is a graph of order \(5k\) with \(\delta(G) \geq 3k\), then \(G\) contains \(k\) vertex-disjoint \(5\)-cycles? In support of this question, we prove that if \(G\) is a graph of order \(5k\) with \(\omega_2(G) \geq 6l – 2\), then, unless \(\overline{K_{l-2}} + K_{2l+1,2l+1} \subseteq G \subseteq K_{l-2} + K_{2l+1,2l+1}\), \(G\) contains \(l – 1\) vertex-disjoint \(5\)-cycles and a path of order \(5\), which is vertex-disjoint from the \(l – 1\) \(5\)-cycles. In fact, we prove a more general result that if \(G\) is a graph of order \(5k + 2s\) with \(\omega_2(G) \geq 6k + 2s\), then, unless \(\overline{K_{k}} + K_{2k+s,2k+s} \subseteq G \subseteq K_{k} + K_{2k+s,2k+s}\), \(G\) contains \(k+1\) vertex-disjoint \(5\)-cycles and a path of order \(2s – 5\), which is vertex-disjoint from the \(k + 1\) \(5\)-cycles. As an application of this theorem, we give a short proof for determining the exact value of \(\text{ex}(n,(k + 1)C_5)\), and characterize the extremal graph.

Saadet Arslan 1, Fikri Koken2
1SeLcuk University, Facutry or EDUCATION, DEPARTMENT OF MATHEMATICS, 42090 MERAM, KONYA, TURKEY
2Setcuk UNtversiry, FACULTY oF Science, DEPARTMENT OF MATHEMATICS, 42075 KaMmPus, Konya, TURKEY
Abstract:

In this paper, we present the complex factorizations of the Jacobsthal and Jacobsthal Lucas numbers by determinants of tridiagonal matrices.

E. Kilic1, D. Tasci2
1TOBB ECONOMICS AND TECHNOLOGY UNIVERSITY MATHEMATICS DEPARTMENT 06560 ANKARA TURKEY
2Gazi University, DEPARTMENT OF MATHEMATICS, 06500 ANKARA TURKEY
Abstract:

In this paper, we find families of \((0, -1, 1)\)-tridiagonal matrices whose determinants and permanents equal the negatively subscripted Fibonacci and Lucas numbers. Also, we give complex factorizations of these numbers by the first and second kinds of Chebyshev polynomials.

Bart De Bruyn1
1 Ghent University, Department of Pure Mathematics and Computer Algebra, Galglaan 2, B-9000 Gent, Belgium,
Abstract:

We classify all finite near hexagons which satisfy the following properties for a certain \(t_2 \in \{1,2,4\}\):(i) every line is incident with precisely three points;(ii) for every point \(x\), there exists a point \(y\) at distance \(3\) from \(x\);(iii) every two points at distance \(2\) from each other have either \(1\) or \(t_2 + 1\) common neighbours;(iv) every quad is big. As a corollary, we obtain a classification of all finite near hexagons satisfying (i), (ii) and (iii) with \(t_2\) equal to \(4\).

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;