Peter Dankelmann1, Henda C. Swart 1, Ortrud R. Oellermann 2
1University of Natal Durban, South Africa
2 Brandon University Brandon, MB Canada
Abstract:

In this paper, we consider three conjectures of the computer program GRAFFITI. Moreover, we prove that every connected graph with minimum degree \(\delta\) and diameter \(d_m\) contains a matching of size at least \(\frac{\delta(d_m + 1)}{6}\). This inequality improves one of the conjectures under the additional assumption that \(\delta \geq 6\).

Rao Li1
1 Department of Mathematical Sciences University of Memphis Memphis, TN 38152
Abstract:

Let \(G\) be a \(1\)-tough graph of order \(n\). If \(|N(S)| \geq \frac{n + |S| – 1}{3}\)
for every non-empty subset \(S\) of the vertex set \(V(G)\) of \(G\), then \(G\) is hamiltonian.

N. Shalaby1, M.A. Al-Gwaiz 2
1 Department of Mathematics and Statistics Memorial University of Newfoundland St. John’s, Newfoundland Canada, A1C 587
2Department of Mathematics College of Science King Saud University Riyadh 1145, P.O. Box 2455 Kingdom of Saudi Arabia
Abstract:

We introduce generalized hooked, extended, and near-Skolem sequences and determine necessary conditions for their existence, the minimum number of hooks, and their permissible locations. We also produce computational results for small orders in each case.

P. Dukes1, H. Emerson1, G. MacGillivray1
1University of Victoria, Department of Mathematics and Statistics, Victoria, B.C., Canada V8W 3P4. Research supported by NSERC.
Abstract:

Let \(H\) be a graph. An \(H\)-colouring of a graph \(G\) is an edge-preserving mapping of the vertices of \(G\) to the vertices of \(H\). We consider the Extendable \(H\)-colouring Problem, that is, the problem of deciding whether a partial \(H\)-colouring of some finite subset of the vertices of \(G\) can be extended to an \(H\)-colouring of \(G\). We show that, for a class of finitely described infinite graphs, Extendable \(H\)-colouring is undecidable for all finite non-bipartite graphs \(H\), and also for some finite bipartite graphs \(H\). Similar results are established when \(H\) is a finite reflexive graph.

Frank Harary 1, Teresa W. Haynes2, Peter J. Slater 3
1Department of Computer Science New Mexico State University Las Cruses, NM 88003
2Department of Mathematics East Tennessee State University Johnson City, TN 37614
3 Department of Mathematics University of Alabama in Huntsville Huntsville, AL 35899
Abstract:

Each vertex of a graph \(G = (V, E)\) dominates every vertex in its closed neighborhood. A set \(S \subset V\) is a dominating set if each vertex in \(V\) is dominated by at least one vertex of \(S\), and is an \emph{efficient dominating set} if each vertex in \(V\) is dominated by exactly one vertex of \(S\).

The domination excess \(de(G)\) is the smallest number of times that the vertices of \(G\) are dominated more than once by a minimum dominating set.

We study graphs having efficient dominating sets. In particular, we characterize such coronas and caterpillars, as well as the graphs \(G\) for which both \(G\) and \(\bar{G}\) have efficient dominating sets.

Then we investigate bounds on the domination excess in graphs which do not have efficient dominating sets and show that for any tree \(T\) of order \(n\),
\(de(T) \leq \frac{2n}{3} – 2\).

Johannes H. Hattingh 1, Michael A. Henning2
1Department of Mathematics Rand Afrikaans University P.O. Box 524 Auckland Park 2006 South Africa
2 Department of Mathematics University of Natal Private Bag X01 Pietermaritzburg 3209 South Africa
Abstract:

Let \(G = (V, E)\) be a graph. A vertex \(u\) strongly dominates a vertex \(v\) if \(uv \in E\) and \(\deg(u) > \deg(v)\). A set \(S \subseteq V\) is a strong dominating set of \(G\) if every vertex in \(V – S\) is strongly dominated by at least one vertex of \(S\).

The minimum cardinality among all strong dominating sets of \(G\) is called the strong domination number of \(G\) and is denoted by \(\gamma_{st}(G)\). This parameter was introduced by Sampathkumar and Pushpa Latha in [4].

In this paper, we investigate sharp upper bounds on the strong domination number for a tree and a connected graph. We show that for any tree \(T\) of order \(p > 2\) that is different from the tree obtained from a star \(K_{1,3}\) by subdividing each edge once,
\(\gamma_{st}(T) \leq \frac{4p – 1}{7}\)
and this bound is sharp.

For any connected graph \(G\) of order \(p \geq 3\), it is shown that \(\gamma_{st}(G) \leq \frac{2(p – 1)}{3}\) and this bound is sharp. We show that the decision problem corresponding to the computation of \(\gamma_{st}\) is NP-complete, even for bipartite or chordal graphs.

Ahmed M. Assaf1
1 Department of Mathematics Central Michigan University Mt. Pleasant, MI 48859
Abstract:

Let \(V\) be a finite set of order \(\nu\). A \((\nu, \kappa\lambda)\) packing design of index \(\lambda\) and block size \(\kappa\) is a collection of \(\kappa\)-element subsets, called blocks, such that every 2-subset of \(V\) occurs in at most \(\lambda\) blocks.

The packing problem is to determine the maximum number of blocks, \(\sigma(\nu\kappa\lambda)\), in a packing design. It is well known that
\(\sigma(\nu, \kappa\lambda) \leq \left[\frac{\nu}{\kappa}\left[ \frac{(\nu-1)}{(\kappa-1)}\lambda\right]\right] = \Psi(\nu, \kappa, \lambda)\), where \([x]\) is the largest integer satisfying \(x \geq [x]\).

It is shown here that \(\sigma(\nu, 5, \lambda) = \Psi(\nu, 5, \lambda) – e\) for all positive integers \(\nu \geq 5\) and \(7 \leq \lambda \leq 21\), where \(e = 1\text{ if } \lambda(\nu-1) \equiv 0 \pmod{\kappa-1} \text{ and } \lambda\nu\frac{(\nu-1)}{(\kappa-1)} \equiv 1 \pmod{\kappa}\) and \(e = 0\) otherwise with the following possible exceptions of \((\nu, \lambda)\) = (28,7), (32,7), (44,7), (32,9), (28,11), (39,11), (28,13), (28,15), (28,19), (39,21).

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;