Online Journal of Analytic Combinatorics

ISSN 1931-3365 (online)

The Online Journal of Analytic Combinatorics (OJAC) is a peer-reviewed electronic journal previously hosted by the University of Rochester and now published by Combinatorial Press. OJAC features research articles that span a broad spectrum of topics, including analysis, number theory, and combinatorics, with a focus on the convergence and interplay between these disciplines. The journal particularly welcomes submissions that incorporate one or more of the following elements: combinatorial results derived using analytic methods, analytic results achieved through combinatorial approaches, or a synthesis of combinatorics and analysis in either the methodologies or their applications

Mordechay B. Levin1
1Department of Mathematics, Bar-Ilan University, Ramat-Gan, 52900, Israel
Abstract:

In [Fr2, Skr], Frolov and Skriganov showed that low discrepancy point sets in the multidimensional unit cube \([0,1)^s\) can be obtained from admissible lattices in \( \mathbb{R}^s \). In this paper, we get a similar result for the case of \( (\mathbb{F}_q((x^{-1})))^s \). Then we combine this approach with Halton’s construction of low discrepancy sequences.

Abstract:

Let \( \mathcal{P}_N(\mathbb{R}) \) be the space of all real polynomials in \( N \) variables with the usual inner product \( \langle \cdot, \cdot \rangle \) on it, given by integrating over the unit sphere. We start by deriving an explicit combinatorial formula for the bilinear form representing this inner product on the space of coefficient vectors of all polynomials in \( \mathcal{P}_N(\mathbb{R}) \) of degree \( \leq M \). We exhibit two applications of this formula. First, given a finite-dimensional subspace \( V \) of \( \mathcal{P}_N(\mathbb{R}) \) defined over \( \mathbb{Q} \), we prove the existence of an orthogonal basis for \( (V, \langle \cdot, \cdot \rangle) \), consisting of polynomials of small height with integer coefficients, providing an explicit bound on the height; this can be viewed as a version of Siegel’s lemma for real polynomial inner product spaces. Secondly, we derive a criterion for a finite set of points on the unit sphere in \( \mathbb{R}^N \) to be a spherical \( M \)-design.

Charles Knessl1, Wojciech Szpankowski2
1Dept. Mathematics, Statistics & Computer Science University of Illinois at Chicago Chicago, Illinois 60607-7045 U.S.A
2Department of Computer Science Purdue University, W. Lafayette, IN 47907, U.S.A.
Abstract:

A digital search tree (DST) – one of the most fundamental data structures on words – is a digital tree in which keys (strings, words) are stored directly in (internal) nodes. The profile of a digital search tree is a parameter that counts the number of nodes at the same distance from the root. It is a function of the number of nodes and the distance from the root. Several tree parameters, such as height, size, depth, shortest path, and fill-up level, can be uniformly analyzed through the profile. In this note we analyze asymptotically the average profile for a symmetric digital search tree in which strings are generated by an unbiased memoryless source. We show that the average profile undergoes several phase transitions: initially it resembles a full tree until it starts growing algebraically with the number of nodes, and then it decays first algebraically, then exponentially, and finally quadratic exponentially. We derive these results by a combinational of analytic techniques, such as the saddle point method.

E. A. Herman1
1Grinnell College
Abstract:

A Hankel operator \( H = [h_{i+j}] \) can be factored as \( H = MM^* \), where \( M \) maps a space of \( L^2 \) functions to the corresponding moment sequences. Furthermore, a necessary and sufficient condition for a sequence to be in the range of \( M \) can be expressed in terms of an expansion in orthogonal polynomials. Combining these two results yields a wealth of combinatorial identities that incorporate both the matrix entries \( h_{i+j} \) and the coefficients of the orthogonal polynomials.

Abstract:

In the paper, we are studying some properties of subsets \( Q \subseteq \Lambda_1 + \cdots + \Lambda_k \), where \( \Lambda_i \) are dissociated sets. The exact upper bound for the number of solutions of the following equation:
\[
q_1 + \cdots + q_p = q_{p+1} + \cdots + q_{2p}, \quad q_i \in Q \tag{1}
\]
in groups \( \mathbb{F}_2^n \) is found. Using our approach, we easily prove a recent result of J. Bourgain on sets of large exponential sums and obtain a tiny improvement of his theorem. Besides, an inverse problem is considered in the article. Let \( Q \) be a set belonging to a subset of two dissociated sets such that equation (1) has many solutions. We prove that in this case, a large proportion of \( Q \) is highly structured.

Silvia Heubach 1, Toufik Mansour 2, Augustine O. Munagi 3
1Department of Mathematics, California State University Los Angeles, Los Angeles, CA 90032
2Department of Mathematics, University of Haifa, Haifa 31905, Israel
3School of Mathematics, University of the Witwatersrand, 2050 Johannesburg, South Africa
Abstract:

We classify compositions avoiding a single permutation pattern of type (2, 1) according to
Wilf-equivalence and give the generating function for each of the Wilf classes.

E. Rodney Canfield1, Brendan D. McKay2
1Department of Computer Science University of Georgia Athens, GA 30602, USA
2Department of Computer Science Australian National University Canberra ACT 0200, Australia
Abstract:

Let \( m, n \geq 1 \) be integers. Define \( \mathcal{T}_{m,n} \) to be the <i>transportation polytope</i> consisting of the \( m \times n \) non-negative real matrices whose rows each sum to \( 1 \) and whose columns each sum to \( m/n \). The special case \( \mathcal{B}_n = \mathcal{T}_{n,n} \) is the much-studied <i>Birkhoff-von Neumann polytope</i> of doubly-stochastic matrices. Using a recent asymptotic enumeration of non-negative integer matrices (Canfield and McKay, 2007), we determine the asymptotic volume of \( \mathcal{T}_{m,n} \) as \( n \to \infty \) with \( m = m(n) \) such that \( m/n \) neither decreases nor increases too quickly. In particular, we give an asymptotic formula for the volume of \( \mathcal{B}_n \).

Iistvan Mezo1
1Department of Algebra and Number Theory, Institute of Mathematics, University of Debrecen, Hungary
Abstract:

We define the analytic extension of hyperharmonic numbers involving the Pochhammer symbol, gamma and digamma functions. In addition, some sum of hyperharmonic series have been calculated. Surprisingly, the Lerch transcendent appears in the closed form of the sums.

Dmitriy Bilyk 1, Michael Lacey1, Armen Vagharshakyan1
1School of Mathematics Georgia Institute of Technology Atlanta GA 30332
Abstract:

Let \( h_R \) denote an \( L^\infty \)-normalized Haar function adapted to a dyadic rectangle \( R \subset [0,1]^d \). We show that for all choices of coefficients \( \alpha(R) \in \{\pm 1\} \), we have the following lower bound on the \( L^\infty \)-norms of the sums of such functions, where the sum is over rectangles of a fixed volume:
\[
n^{\eta(d)} \lesssim \Bigg\| \sum_{|R| = 2^{-n}} \alpha(R) h_R(x) \Bigg\|_{L^\infty([0,1]^d)}, \quad \text{for all } \eta(d) < \frac{d-1}{2} + \frac{1}{8d},
\]
where the implied constant is independent of \( n \geq 1 \). The inequality above (without restriction on the coefficients) arises in connection to several areas, such as Probabilities, Approximation, and Discrepancy. With \( \eta(d) = (d-1)/2 \), the inequality above follows from orthogonality, while it is conjectured that the inequality holds with \( \eta(d) = d/2 \). This is known and proved in \( (Talagrand, 1994) \) in the case of \( d = 2 \), and recent papers of the authors \( (Bilyk \text{ and } Lacey, 2006) \), \( (Bilyk \text{ et al., 2007}) \) prove that in higher dimensions one can take \( \eta(d) > (d-1)/2 \), without specifying a particular value of \( \eta \). The restriction \( \alpha_R \in \{\pm 1\} \) allows us to significantly simplify our prior arguments and to find an explicit value of \( \eta(d) \).

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;