John Wesley Brown1, E.T. Parker1
1 University of Illinois Urbana, Il 61801
Abstract:

We verify that \(6\) more of the tum squares of order \(10\) cannot be completed to a triple of mutually orthogonal Latin squares of order \(10\). We find a pair of orthogonal Latin squares of order \(10\) with \(6\) common transversals, \(5\) of which have only a single intersection, and a pair with \(7\) common transversals.

Bernt Lindstrom1
1 Department of Mathematics Box 6701 S-11385 Stockholm, Sweden
Rolf Rees1, C.A. Rodger2
1Department of Mathematics and Computer Science Mount Allison University
2 Department of Algebra, Combinatorics and Analysis Auburn Univeristy
Abstract:

We give a complete solution to the existence problem for subdesigns in complementary \(\mathrm{P}_3\)-decompositions, where \(\mathrm{P}_3\) denotes the path of length three. As a corollary we obtain the spectrum for incomplete designs with block size four and \(\lambda = 2\), having one hole.

D. Chen1, D.R. Stinson2
1Department of Computer Science University of Manitoba Winnipeg, Manitoba, R3T 2N2 Canada
2 Computer Science and Engineering Department and Center for Communication and Information Science University of Nebraska Lincoln, Nebraska, 68588 USS.A.
Abstract:

In this paper, we give some recursive constructions for large sets of disjoint group-divisible designs with block size \(3\). In particular, we construct new infinite classes of large sets for designs having group-size two. These large sets have applications in cryptography to the construction of perfect threshold schemes.

Y. Caro1, Y. Roditty2
1Department of Mathematics School of Education University of Haifa—ORANIM Tivon ISRAEL 36910
2School of Mathematics Tel-Aviv University Ramat-Aviv, Tel-Aviv ISRAEL 69978
Abstract:

A decomposition into non-isomorphic matchings, or \(DINIM\) for short, is a partition of the edges of a graph \(G\) into matchings of different sizes. As a special case of our results, we prove that if a graph \(G\) has at least \((2\chi’ – 2)\chi’ + 1\) edges, where \(\chi’ = \chi'(G)\) is the chromatic index of \(G\), then \(G\) has a \(DINIM\). In particular, the \(n\)-dimensional cube, \(Q_n\), \(n \geq 4\), has a \(DINIM\). These results confirm two conjectures which appeared in Chinn and Richter [3].

R. Ewen1, M. Hofmeister2
1 Cologne
2Cologne
Abstract:

We present a permutation group whose orbits classify isomorphism of covering projections of the complete graph with \(4\) vertices. Two structure theorems concerning this group are proved.

Geoffrey Exoo1
1Department of Mathematics and Computer Science Indiana State University Terre Haute, IN 47809
Abstract:

Constructions have been completed which improve the lower bounds for \(R(4,6)\), \(R(5,6)\) and \(R(3,12)\).

Y.H. Peng1, C.C. Chen2, K.M. Koh2
1Department of Mathematics Untversiti Pertanian Malaysia 48400 Serdang, Malaysia
2Department of Mathematics — National University of Singapore Kent Ridge, Singapore 05-11
Abstract:

Let \(G\) be a graph with minimum degree \(\delta\). For each \(i = 1, 2, \ldots, \delta \), let \(a_i(G)\) (resp. \(\alpha^*_i(G)\)) denote the smallest integer \(k\) such that \(G\) has an \([i, k]\)-factor (resp. a connected \([i, k]\)-factor). Denote by \(G_n\) a complete \(n\)-partite graph. In this paper, we determine the value of \(\alpha_t(G_n)\), and show that \(0 \leq \alpha^*_1(G_n) – \alpha(G_n) \leq 1\) and \(\alpha^*_i(G_n) = a_i(G_n)\) for each \(i = 2, 3, \ldots, \delta\).

Biagio Micale1, Mario Pennisi1
1 Dipartimento di Matematica Universita di Catania Viale A. Doria 5 95125 Catania Italy
Abstract:

An oriented (or ordered) triple means either a Mendelsohn or a transitive triple. An oriented (or ordered) triple system of order \(v\), briefly OTS(\(v\)), is a pair \((V, B)\), where \(V\) is a \(v\)-set and \(B\) is a collection of oriented triples of elements of \(V\), such that every ordered pair of distinct elements of \(V\) belongs to exactly one member of \(B\). It is known that an OTS(\(v\)) exists if and only if \(v \equiv 0, 1 \pmod{3}\). An OTS(\(v\)) is cyclic if it admits an automorphism consisting of a single cycle of length \(v\); an OTS(\(v\)) is rotational if it admits an automorphism consisting of a single fixed point and one cycle of length \(v-1\). In this note we give some constructions of OTS(\(v\))’s which allow to determine the spectrum of cyclic and of rotational OTS(\(v\))’s.

Y. Roditty1
1School of Mathematical Sciences Tel-Aviv University Tel-Aviv Israel
Abstract:

It is shown that the maximal number of pairwise edge disjoint trees of order seven in the complete graph \(K_n\), and the minimum number of trees of order seven, whose union is \(K_n\), are \(\left\lfloor\frac{n(n-1)}{12}\right\rfloor\) and \(\left\lceil\frac{n(n-1)}{12}\right\rceil,n\geq 11\), respectively. (\(\lfloor x\rfloor\) denotes the largest integer not exceeding \(x\) and \(\lceil x\rceil\) the least integer not less than \(x\)).

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;