Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Bao-Xing Chen1,2, Ji-Xiang Meng2, Wen-Jun Xiao3
1Dept. of Computer Science, Zhangzhou Teacher’s College, Zhangzhou, P.R. China
2College of Mathematics & System Science, Xinjiang University, Wulumugi, P.R. China
3Dept. of Computer Science, South China University of Technology, Guangzhou, P.R. China
Abstract:

Let \(n, s_1\) and \(s_2\) be positive integers such that \(1 \leq s_1 \leq n/2, 1 \leq s_2 \leq n/2, s_1 \neq s_2\) and \(gcd(n, s_1, s_2) = 1\). An undirected double-loop network \(G(n;\pm s_1,\pm s_2)\) is a graph \((V, E)\), where \(V = \mathbb{Z}_n = \{0, 1, 2, \ldots, n-1\}\), and \(E = \{(i \to i+s_1 \mod n), (i\to i-s_1 \mod n), (i\to i+s_2 \mod n), (i\to i-s_2 \mod n) | i = 0, 1, 2, \ldots, n-1\}\). In this paper, a diameter formula is given for an undirected double-loop network \(G(n; \pm s_1, \pm s_2)\). As its application, two new optimal families of undirected double-loop networks are presented.

Wen Liu1, Yafan Yue2, Suogang Gao3
1Math. and Inf. College, Hebei Normal University, Shijiazhuang, 050016. P.R. China;
2Beihua Institute of Astronautic Engineering, LangFang, 065000, P.R.China
3 Math. and Inf. College, Hebei Normal University, Shijiazhuang, 050016. P.R. China;
Abstract:

Anthony J. Macula constructed a \(d\)-disjunct matrix \(\delta(n,d,k)\) in \([1]\), and we now know it is determined by one type of pooling space. In this paper, we give some properties of \(\delta(n,d,k)\) and its complement \(\delta^c(n,d,k)\).

Yubin Gao1, Yihua Huang2, Yanling Shao1
1Department of Mathematics, North University of China Taiyuan, Shanxi 030051, P.R. China
2Department of Electronics Engineering, Sun Yat-sen University Guangzhou 510275, P.R. China
Abstract:

Let \(S\) be a primitive non-powerful signed digraph. The base \(l(S)\) of \(S\) is the smallest positive integer \(l\) such that for all ordered pairs of vertices \(i\) and \(j\) (not necessarily distinct), there exists a pair of \(SSSD\) walks of length \(t\) from \(i\) to \(j\) for each integer \(t \geq l\). In this work, we use \(PNSSD\) to denote the class of all primitive non-powerful signed symmetric digraphs of order \(n\) with at least one loop. Let \(l(n)\) be the largest value of \(l(S)\) for \(S \in\) \(PNSSD\), and \(L(n) = \{l(S) | S \in PNSSD\}\). For \(n \geq 3\), we show \(L(n) = \{2, 3, \ldots, 2n\}\). Further, we characterize all primitive non-powerful signed symmetric digraphs of order \(n\) with at least one loop whose bases attain \(l(n)\).

Ebrahim Salehi1, Shipra De1
1Department of Mathematical Sciences University of Nevada, Las Vegas Las Vegas, NV 89154-4020
Abstract:

For a graph \(G = (V, E)\) and a binary labeling \(f : V(G) \to \mathbb{Z}_2\), let \(v_f(i) = |f^{-1}(1)|\). The labeling \(f\) is said to be friendly if \(|v_f(1) – v_f(0)| \leq 1\). Any vertex labeling \(f : V(G) \to \mathbb{Z}_2\) induces an edge labeling \(f^* : E(G) \to \mathbb{Z}_2\) defined by \(f^*(xy) =| f(x) – f(y)|\). Let \(e_f(i) = |f^{*-1}(i)|\). The friendly index set of the graph \(G\), denoted by \(FI(G)\), is defined by

\[FI(G) = \{|e_f(1) – e_f(0)| : f \text{ is a friendly vertex labeling of } G\}.\]

In \([15]\) Lee and Ng conjectured that the friendly index sets of trees will form an arithmetic progression. This conjecture has been mentioned in \([17]\) and other manuscripts. In this paper, we will first determine the friendly index sets of certain caterpillars of diameter four. Then we will disprove the conjecture by presenting an infinite number of trees whose friendly index sets do not form an arithmetic progression.

Yanling Shao1, Yubin Gao1
1Department of Mathematics, North University of China Taiyuan, Shanxi 030051, P.R. China
Abstract:

Let \(S\) be a primitive non-powerful signed digraph of order \(n\). The base of a vertex \(u\), denoted by \(l_S(u)\), is the smallest positive integer \(l\) such that there is a pair of SSSD walks of length \(i\) from \(u\) to each vertex \(v \in V(S)\) for any integer \(t \geq l\). We choose to order the vertices of \(S\) in such a way that \(l_S(1) \leq l_S(2) \leq \ldots \leq l_S(n)\), and call \(l_S(k)\) the \(k\)th local base of \(S\) for \(1 \leq k \leq n\). In this work, we use PNSSD to denote the class of all primitive non-powerful signed symmetric digraphs of order \(n\) with at least one loop. Let \(l(k)\) be the largest value of \(l_S(k)\) for \(S \in\) PNSSD, and \(L(k) = \{l_S(k) | S \in PNSSD\}\). For \(n \geq 3\) and \(1 \leq k \leq n-1\), we show \(I(k) = 2n – 1\) and \(L(k) = \{2, 3, \ldots, 2n-1\}\). Further, we characterize all primitive non-powerful signed symmetric digraphs whose \(k\)th local bases attain \(I(k)\).

Xiaoling Zhang1, Heping Zhang1
1School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.
Abstract:

Let \(\mathcal{U}_n(k)\) denote the set of all unicyclic graphs on \(n\) vertices with \(k\) (\(k \geq 1\)) pendant vertices. Let \(\diamondsuit_4^k\) be the graph on \(n\) vertices obtained from \(C_4\) by attaching \(k\) paths of almost equal lengths at the same vertex. In this paper, we prove that \(\diamondsuit_4^k\) is the unique graph with the largest Laplacian spectral radius among all the graphs in \(\mathcal{U}_n(k)\), when \(n \geq k + 4\).

Xiaodong Xu1, Zehui Shao2, Stanistaw P.Radziszowski3
1Guangxi Academy of Sciences Nanning,Guangxi 530007, China
2Department of Control Science and Engineering Huazhong University of Science and Technology Wuhan 430074, China
3Department of Computer Science Rochester Institute of Technology Rochester, NY 14623, USA
Abstract:

For graphs \(G_1, G_2, \ldots, G_m\), the Ramsey number \(R(G_1, G_2, \ldots, G_m)\) is defined to be the smallest integer \(n\) such that any \(m\)-coloring of the edges of the complete graph \(K_n\) must include a monochromatic \(G_i\) in color \(i\), for some \(i\). In this note, we establish several lower and upper bounds for some Ramsey numbers involving quadrilateral \(C_4\), including:\(R(C_4, K_9) \leq 32,
19 \leq R(C_4, C_4, K_4)\leq 22, 31 \leq R(C_4, C_4, C_4, K_4) \leq 50, 52 \leq R(C_4, K_4, K_4) \leq 72, 42 \leq R(C_4, C_4, K_3, K_5) \leq 76, 87\leq R(C_4, C_4, K_4, K_4) \leq 179.\)

Zoran Stanic1
1Faculty of Mathematics University of Belgrade 11 000 Belgrade, Serbia
Abstract:

We consider the problem of determining the \(Q\)-integral graphs, i.e., the graphs with integral signless Laplacian spectrum. First, we determine some infinite series of such graphs having the other two spectra (the usual one and the Laplacian) integral. We also completely determine all \((2, s)\)-semiregular bipartite graphs with integral signless Laplacian spectrum. Finally, we give some results concerning \((3, 4)\) and \((3, 5)\)-semiregular bipartite graphs with the same property.

Daphne Der-Fen Liu 1, Melanie Xie2
1Department of Mathematics California State University, Los Angeles Los Angeles, CA 90032
2Department of Mathematics East Los Angeles College Monterey Park, CA 91754
Abstract:

Let \(G\) be a connected graph. For any two vertices \(u\) and \(v\), let \(d(u, v)\) denote the distance between \(u\) and \(v\) in \(G\). The maximum distance between any pair of vertices is called the diameter of \(G\) and denoted by \(diam(G)\). A radio-labeling (or multi-level distance labeling) with span \(k\) for \(G\) is a function \(f\) that assigns to each vertex a label from the set \(\{0, 1, 2, \ldots, k\}\) such that the following holds for any vertices \(u\) and \(v\): \(|f(u) – f(v)| \geq diam(G) – d(u, v) + 1\). The radio number of \(G\) is the minimum span over all radio-labelings of \(G\). The square of \(G\) is a graph constructed from \(G\) by adding edges between vertices of distance two apart in \(G\). In this article, we completely determine the radio number for the square of any path.

Xiumei Wang1, Zhenkun Zhang2, Yixun Lin1
1Department of Mathematics, Zhengzhou University, Zhengzhou 450052, China
2Office of Academic Affairs, Huanghuai University, Zhumeadian 463000, China
Abstract:

Let \(G\) be a simple connected graph containing a perfect matching. \(G\) is said to be BM-extendable if every matching \(M\) whose induced subgraph is a bipartite graph extends to a perfect matching of \(G\). In this paper, for recognizing BM-extendable graphs, we present some conditions in terms of vertex degrees, including the degree sum conditions, the minimum degree conditions, and the Fan-type condition. Furthermore, we show that all these conditions are best possible in some sense.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;