
Ars Combinatoria
ISSN 0381-7032 (print), 2817-5204 (online)
Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.
Information Menu
- Research article
- Full Text
- Ars Combinatoria
- Volume 070
- Pages: 289-295
- Published: 31/01/2004
We first prove that for any fixed \(k\), a cubic graph with few short cycles contains a \(K_{k}\)-minor. This is a direct generalization of a result on girth by Thomassen. We then use this theorem to show that for any fixed \(k\), a random cubic graph contains a \(K_{k}\)-minor asymptotically almost surely.
- Research article
- Full Text
- Ars Combinatoria
- Volume 070
- Pages: 275-287
- Published: 31/01/2004
Partial parallelisrms Uhat admit a collineation group that fixes one spread \(\Sigma\), fixes a line of it and acts sharply two-transitive on the remaining lines of \(\Sigma\) are completely classified.
- Research article
- Full Text
- Ars Combinatoria
- Volume 070
- Pages: 265-274
- Published: 31/01/2004
Recently, Babson and Steingrimsson (see \([BS]\)) introduced generalized permutation patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the permutation.
Following \([BCS]\), let \(e_k,m\) (respectively, \(f_k\pi\)) be the number of occurrences of the generalized pattern \(12-3-\ldots-k\) (respectively, \(21-3-\ldots-k\)) in a permutation \(\pi\). In the present note, we study the distribution of the statistics \(e_k,f_k\) and \(f_k\pi\) in a permutation avoiding the classical pattern \(1-3-2\).
We also present some applications of our results, which relate the enumeration of permutations avoiding the classical pattern \(1-3-2\) according to the statistics \(e_k\) and \(f_k\) to Narayana numbers and Catalan numbers.
- Research article
- Full Text
- Ars Combinatoria
- Volume 070
- Pages: 257-264
- Published: 31/01/2004
We show that a negation of tautology corresponds to a family of graphs without nowhere-zero group- and integer-valued flows.
- Research article
- Full Text
- Ars Combinatoria
- Volume 070
- Pages: 245-255
- Published: 31/01/2004
We show that in any graph \(G\) on \(n\) vertices with \(d(x) + d(y) \geq n\) for any two nonadjacent vertices \(x\) and \(y\), we can fix the order of \(k\) vertices on a given cycle and find a Hamiltonian cycle encountering these vertices in the same order, as long as \(k < n/12\) and \(G\) is \([(k+1)/2]\)-connected. Further, we show that every \([3k/2]\)-connected graph on \(n\) vertices with \(d(x) + d(y) \geq n\) for any two nonadjacent vertices \(x\) and \(y\) is \(k\)-ordered Hamiltonian, i.e., for every ordered set of \(k\) vertices, we can find a Hamiltonian cycle encountering these vertices in the given order. Both connectivity bounds are best possible.
- Research article
- Full Text
- Ars Combinatoria
- Volume 070
- Pages: 221-243
- Published: 31/01/2004
We establish that for any \(m \in \mathbb{N}\) and any \(K_m\)-free graph \(G\) on \(\mathbb{N}\), there exist large additive and multiplicative structures that are independent with respect to \(G\). In particular, there exists for each \(l \in \mathbb{N}\) an arithmetic progression \(A_l\) of length \(l\) with increment chosen from the finite sums of a prespecified sequence \(\langle t_{l,n}\rangle _{n=1}^{\infty}\), such that \(\bigcup_{i=1 }^\infty A_l\) is an independent set. Moreover, if \(F\) and \(H\) are disjoint finite subsets of \(\mathbb{N}\), and for each \(t \in F \cup H\), \(a_t \in A_l\), then \(\{\Sigma_{t \in F}a_t\Sigma_{t \in H} a_t\}\) is not an edge of \(G\). If \(G\) is \(K_{m,m}\)-free, one may drop the disjointness assumption on the sets \(F\) and \(H\). Analogous results are valid for geometric progressions.
- Research article
- Full Text
- Ars Combinatoria
- Volume 070
- Pages: 207-220
- Published: 31/01/2004
A connected graph \(G(V, E)\) is said to be \((a, d)\)-antimagic if there exist positive integers \(a\) and \(d\) and a bijection \(f: E \to \{1, 2, \ldots, |E|\}\) such that the induced mapping \(g_f: V \to \mathbb{N}\) defined by \(g_f(v) = \sum\{f(u,v) | (u, v) \in E(G)\}\) is injective and \(g_f(V) = \{a, a+d, a+2d, \ldots, a+(|V|-1)d\}\). In this paper, we mainly investigate \((a, d)\)-antimagic labeling of some special trees, complete bipartite graphs \(K_{m,n}\), and categorize \((a, d)\)-antimagic unicyclic graphs.
- Research article
- Full Text
- Ars Combinatoria
- Volume 070
- Pages: 197-205
- Published: 31/01/2004
A graph \(G = (V, E)\) is said to be an \(integral \;sum \;graph\) ( respectively, \(sum \;graph\)) if there is a labeling \(f\) of its vertices with distinct integers ( respectively, positive integers) , so that for any two vertices \(u\) and \(v\), \(uv\) is an edge of \(G\) if and only if \(f(u) + f(v) = f(w)\) for some other vertex \(w\). For a given graph \(G\), the \(integral\; sum\; number\) \(\zeta = \zeta(G)\) (respectively, \(sum\; number\) \(\sigma = \sigma(G)\) ) is defined to be the smallest number of isolated vertices which when added to \(G\) result in an integral sum graph (respectively, sum graph). In a graph \(G\), a vertex \(v \in V(G)\) is said to a \(hanging\; vertex\) if the degree of it \(d(v) = 1\). A path \(P \subseteq G\), \(P = x_ox_1x_2\ldots x_t\), is said to be a \(hanging\; path\) if its two end vertices are respectively a hanging vertex \(x_o\) and a vertex \(x_t\) whose degree \(d(x_t) \neq 2\) where \(d(x_j) = 2 (j = 1,2,\ldots,t – 1)\) for every other vertex of \(P\). A hanging path \(P\) is said to be a tail of \(G\), denoted by \(t(G)\), if its length \(|t(G)|\) is a maximum among all hanging paths of \(G\). In this paper, we prove \(\zeta(T_3) = 0\), where \(T_3\) is any tree with \(|t(T_3)| \geq 3\). The result improves a previous result for integral sum trees from identification of Chen\((1998)\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 070
- Pages: 191-196
- Published: 31/01/2004
Let \(H = K_{k_1,k_2,\ldots,k_t}\) be a complete multipartite graph having \(t \geq 3\) parts. Extending the well-known result that a simple graph \(G\) or its complement, \({G}\), is connected, it is proved that in any coloring of the edges of \(H\) with two colors, blue and red, at least one of the subgraphs induced by the blue edges or by the red edges, is connected.
- Research article
- Full Text
- Ars Combinatoria
- Volume 070
- Pages: 183-190
- Published: 31/01/2004
Given a collection of points in the plane, a circle is drawn around each point with radius equal to the smallest distance from that point to any other in the collection. The sphere-of-influence graph is the intersection graph of the open balls given by these circles. Any graph isomorphic to such a graph is a SIG realizable in a plane. Similarly, one can define a SIG realizable on a sphere by selecting a collection of points on a sphere. We show that \(K_9\) is realizable as a SIG on a sphere and that the family of graphs realizable as SIGs on a sphere is at least as large as the family of SIGs in the plane.