Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Klas Markstrom1
1DEPARTMENT OF MATHEMATICS, UMEAUNIVERsITY , SE-901 87 UMEA, SWEDEN
Abstract:

We first prove that for any fixed \(k\), a cubic graph with few short cycles contains a \(K_{k}\)-minor. This is a direct generalization of a result on girth by Thomassen. We then use this theorem to show that for any fixed \(k\), a random cubic graph contains a \(K_{k}\)-minor asymptotically almost surely.

Norman L.Johnson1, Rolando Pomareda2
1Mathematics Dept. University of fowa lowa City, 1A. 52242
2Mathematies Dept. University of Chile Casilla 653 Santiago, Chile
Abstract:

Partial parallelisrms Uhat admit a collineation group that fixes one spread \(\Sigma\), fixes a line of it and acts sharply two-transitive on the remaining lines of \(\Sigma\) are completely classified.

Toufik Mansour1
1LaBRI (UMR 5800), Université Bordeaux 1, 351 cours de la Libération 33405 Talence Cedex
Abstract:

Recently, Babson and Steingrimsson (see \([BS]\)) introduced generalized permutation patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the permutation.

Following \([BCS]\), let \(e_k,m\) (respectively, \(f_k\pi\)) be the number of occurrences of the generalized pattern \(12-3-\ldots-k\) (respectively, \(21-3-\ldots-k\)) in a permutation \(\pi\). In the present note, we study the distribution of the statistics \(e_k,f_k\) and \(f_k\pi\) in a permutation avoiding the classical pattern \(1-3-2\).

We also present some applications of our results, which relate the enumeration of permutations avoiding the classical pattern \(1-3-2\) according to the statistics \(e_k\) and \(f_k\) to Narayana numbers and Catalan numbers.

Martin Kochol1
1MU SAV, STEFANIKOVA 49, 814 73 BRATISLAVA 1, SLOVAKIA
Abstract:

We show that a negation of tautology corresponds to a family of graphs without nowhere-zero group- and integer-valued flows.

Guantao Chen1, Ronald J. Gould2, Florian Pfender3
1Georgia State University Atlanta GA 30303
2 Emory University Atlanta GA 30322
3Emory University Atlanta GA 30322
Abstract:

We show that in any graph \(G\) on \(n\) vertices with \(d(x) + d(y) \geq n\) for any two nonadjacent vertices \(x\) and \(y\), we can fix the order of \(k\) vertices on a given cycle and find a Hamiltonian cycle encountering these vertices in the same order, as long as \(k < n/12\) and \(G\) is \([(k+1)/2]\)-connected. Further, we show that every \([3k/2]\)-connected graph on \(n\) vertices with \(d(x) + d(y) \geq n\) for any two nonadjacent vertices \(x\) and \(y\) is \(k\)-ordered Hamiltonian, i.e., for every ordered set of \(k\) vertices, we can find a Hamiltonian cycle encountering these vertices in the given order. Both connectivity bounds are best possible.

Neil Hindman1, Dona Strauss2
1Department of Mathematics Howard University Washington, DC 20059 USA
2Department of Pure Mathematics University of Hull Hull HU67RX UK
Abstract:

We establish that for any \(m \in \mathbb{N}\) and any \(K_m\)-free graph \(G\) on \(\mathbb{N}\), there exist large additive and multiplicative structures that are independent with respect to \(G\). In particular, there exists for each \(l \in \mathbb{N}\) an arithmetic progression \(A_l\) of length \(l\) with increment chosen from the finite sums of a prespecified sequence \(\langle t_{l,n}\rangle _{n=1}^{\infty}\), such that \(\bigcup_{i=1 }^\infty A_l\) is an independent set. Moreover, if \(F\) and \(H\) are disjoint finite subsets of \(\mathbb{N}\), and for each \(t \in F \cup H\), \(a_t \in A_l\), then \(\{\Sigma_{t \in F}a_t\Sigma_{t \in H} a_t\}\) is not an edge of \(G\). If \(G\) is \(K_{m,m}\)-free, one may drop the disjointness assumption on the sets \(F\) and \(H\). Analogous results are valid for geometric progressions.

T. Nicholas1, S. Somasundaram2, V. Vilfred3
1Department of Mathematics, St. Jude’s College, Thuthur – 629 176 Kanyakumari District, Tamil Nadu. India.
2Department of Mathematics, Manonmaniam Sundaranar University Tirunelveli, Tamil Nadu. India.
3 Department of Mathematics, St. Jude’s College, Thuthur – 629 176 Kanyakumari District, Tamil Nadu. India.
Abstract:

A connected graph \(G(V, E)\) is said to be \((a, d)\)-antimagic if there exist positive integers \(a\) and \(d\) and a bijection \(f: E \to \{1, 2, \ldots, |E|\}\) such that the induced mapping \(g_f: V \to \mathbb{N}\) defined by \(g_f(v) = \sum\{f(u,v) | (u, v) \in E(G)\}\) is injective and \(g_f(V) = \{a, a+d, a+2d, \ldots, a+(|V|-1)d\}\). In this paper, we mainly investigate \((a, d)\)-antimagic labeling of some special trees, complete bipartite graphs \(K_{m,n}\), and categorize \((a, d)\)-antimagic unicyclic graphs.

Wenjie He1, Lixin Wang2, Honghai Mi3, Yufa Shen3, Xinkai Yu3
1Department of Applied Mathematics Hebei University of Technoiogy, Tianjin, 2001/80, PR. China
2Department of Management Engineering Mechanical Engineering College, Shijiazhuang, 050010, P.R.China
3Department of Applied Mathematics Hebei University of Technology, Tianjin, 300130, P.R. China
Abstract:

A graph \(G = (V, E)\) is said to be an \(integral \;sum \;graph\) ( respectively, \(sum \;graph\)) if there is a labeling \(f\) of its vertices with distinct integers ( respectively, positive integers) , so that for any two vertices \(u\) and \(v\), \(uv\) is an edge of \(G\) if and only if \(f(u) + f(v) = f(w)\) for some other vertex \(w\). For a given graph \(G\), the \(integral\; sum\; number\) \(\zeta = \zeta(G)\) (respectively, \(sum\; number\) \(\sigma = \sigma(G)\) ) is defined to be the smallest number of isolated vertices which when added to \(G\) result in an integral sum graph (respectively, sum graph). In a graph \(G\), a vertex \(v \in V(G)\) is said to a \(hanging\; vertex\) if the degree of it \(d(v) = 1\). A path \(P \subseteq G\), \(P = x_ox_1x_2\ldots x_t\), is said to be a \(hanging\; path\) if its two end vertices are respectively a hanging vertex \(x_o\) and a vertex \(x_t\) whose degree \(d(x_t) \neq 2\) where \(d(x_j) = 2 (j = 1,2,\ldots,t – 1)\) for every other vertex of \(P\). A hanging path \(P\) is said to be a tail of \(G\), denoted by \(t(G)\), if its length \(|t(G)|\) is a maximum among all hanging paths of \(G\). In this paper, we prove \(\zeta(T_3) = 0\), where \(T_3\) is any tree with \(|t(T_3)| \geq 3\). The result improves a previous result for integral sum trees from identification of Chen\((1998)\).

Yair Caro1, Yehuda Roditty2
1Departinent of Mathematics School of Education University of Haifa ~ ORANIM Ticou ISRAEL 36910
2School of Computer Sciences, Tel Aviv University, Tel Aviv 69978, Israel and Departinent of Computer Science, The Academie College of Tet-Aviv-Yallo, Tel-Aviv G11GL, Israel
Abstract:

Let \(H = K_{k_1,k_2,\ldots,k_t}\) be a complete multipartite graph having \(t \geq 3\) parts. Extending the well-known result that a simple graph \(G\) or its complement, \({G}\), is connected, it is proved that in any coloring of the edges of \(H\) with two colors, blue and red, at least one of the subgraphs induced by the blue edges or by the red edges, is connected.

Ewa Kubicka1, Grzegorz Kubicki1
1University of Louisville
Abstract:

Given a collection of points in the plane, a circle is drawn around each point with radius equal to the smallest distance from that point to any other in the collection. The sphere-of-influence graph is the intersection graph of the open balls given by these circles. Any graph isomorphic to such a graph is a SIG realizable in a plane. Similarly, one can define a SIG realizable on a sphere by selecting a collection of points on a sphere. We show that \(K_9\) is realizable as a SIG on a sphere and that the family of graphs realizable as SIGs on a sphere is at least as large as the family of SIGs in the plane.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;