E. J. Farrell1, M.A. Sam Chee1
1 Department of Mathematics The University of the West Indies St Augustine, Trinidad
Abstract:

An explicit recurrence is obtained for the clique polynomial of a short ladder in which the two diagonals are drawn in each cell. From this result, an explicit formula for the number of decompositions of the ladder into triangles and \(4\)-cliques is obtained. The recurrence is then used to obtain results for the matching polynomial of the ladder. Finally, an association is made with a particular tiling problem.

Dalibor Froncek1
1Department of Mathematics and Statistics McMaster University Hamilton, Ontario Canada L8S 4K1
Abstract:

Let \(G\) be a finite graph and \(x\) be its vertex. The \({neighbourhood}\) of \(x\) in \(G\), denoted \(N_G(x)\), is a subgraph of \(G\) induced by all vertices adjacent to \(x\). \(G\) is a \({graph \; with \; a \; constant \; neighbourhood}\) if there exists a graph \(H\) such that \(N_G(x)\) is isomorphic to \(H\) for every vertex \(x\) of \(G\).

We completely characterize graphs with constant neighbourhoods isomorphic to complements of regular disconnected graphs.

M. E. Bascufién 1, S. Ruiz1, R. C. Brigham 2, R. M. Caron2, P. J. Slater3, RP. Vitray4
1Universidad Catélica de Valparaiso, Chile
2Department of Mathematics and Computer Science University of Central Florida Orlando, Florida 32816
3Department of Mathematics University of Alabama in Huntsville Huntsville, Alabama 35899
4Department of Mathematics Rollins College Winter Park, Florida 32789
Abstract:

A \({numbering}\) of a graph \(G = (V, E)\) is a bijection \(f: V \rightarrow \{1, 2, \ldots, p\}\) where \(|V| = p\). The \({additive \; bandwidth \; of \; numbering}\) \(f\) is \(B^+(G, f) = \max\{|f(u) + f(v) – (p + 1)| : uv \in E\}\), and the \({additive \; bandwidth}\) of \(G\) is \(B^+(G) = \min\{B^+(G, f) : f \text{ a numbering of } G\}\). Labeling \(V\) by a numbering which yields \(B^+(G)\) has the effect of causing the \(1\)’s in the adjacency matrix of \(G\) to be placed as near as possible to the main counterdiagonal, a fact which offers potential storage savings for some classes of graphs. Properties of additive bandwidth are discussed, including relationships with other graphical invariants, its value for cycles, and bounds on its value for extensions of full \(k\)-ary trees.

Puhua Guan1, Tayuan Huang2
1Department of Mathematics University of Puerto Rico Rio Piedras. PR 00931
2Department of Applied Mathematics National Chiao-Tung University Hsin-Chu 30050, Taiwan, ROC
Abstract:

Let \(\Gamma_\ell\) be the union of \(n\) complete graphs \(A_1, A_2, \ldots, A_n\) of size \(n\) each such that \(|A_i \cap A_j| \leq \ell\) whenever \(i \neq j\). We prove that the chromatic number of \(\Gamma_\ell\) is bounded above by \((2n – 4)\ell + 1\).

Italo J. Dejter1, Reinaldo E. Giudici2
1University of Puerto Rico Department of Mathematics Rio Piedras PR 00931
2Universidad Simén Bolivar Departamento de Mateméticas Caracas, Venezuela
Abstract:

We deal with a family of undirected Cayley graphs \(X_n\) which are unions of disjoint Hamilton cycles, and some of their properties, where \(n\) runs over the positive integers. It is proved that \(X_n\) is a bipartite graph when \(n\) is even. If \(n\) is an odd number, we count the number of different colored triangles in \(X_n\).

Jean H. Bevis1, Gayla S. Domke2, Valerie A. Miller2
1 Department of Mathematics and Computer Science Georgia State University Atlanta, GA 30303-3083 U.S.A.
2Department of Mathematics and Computer Science Georgia State University Atlanta, GA 30303-3083 U.S.A.
Abstract:

There has been a great deal of interest in relating the rank of the adjacency matrix of a graph to other fundamental numbers associated with a graph. We present two results which may be helpful in guiding further development in this area. Firstly, we give a linear time algorithm for finding the rank of any tree which is twice its edge independence number. Secondly, we give a formula for the rank of any grid graph consisting of \(mn\) vertices arranged in a rectangular grid of \(m\) rows and \(n\) columns on a planar, cylindrical, or toroidal surface.

Gerhard W. Dueck1, Janice Jefis2
1 Department of Math. and Computer Science St. Francis Xavier University Antigonish, N. S. B2G 2W5
2 4480 rue Moreau Sherbrooke, QC J1L 1V2
Abstract:

A labeling of the graph \(G\) with \(n\) vertices assigns integers \(\{1, 2, \ldots, n\}\) to the vertices of \(G\). This further induces a labeling on the edges as follows: if \(uv\) is an edge in \(G\), then the label of \(uv\) is the difference between the labels of \(u\) and \(v\). The \({bandwidth}\) of \(G\) is the minimum over all possible labellings of the maximum edge label. The NP-completeness of the bandwidth problem compels the exploration of heuristic algorithms. The Gibbs-Poole-Stockmeyer algorithm (GPS) is the best-known bandwidth reduction algorithm. We introduce a heuristic algorithm that uses simulated annealing to approximate the bandwidth of a graph. We compare labellings generated by our algorithm to those obtained from GPS. Test graphs include: trees, grids, windmills, caterpillars, and random graphs. For most graphs, labellings produced by our algorithm have significantly lower bandwidth than those obtained from GPS.

P. J. Owens1, D. A. Preece2
1Department of Mathematical & Computing Sciences University of Surrey Guildford Surrey GU2 5XH UK
2Institute of Mathematics and Statistics Cornwallis Building The University Canterbury Kent CT2 7NF UK
Abstract:

We define two complete sets \(\mathcal{L}\) and \(\mathcal{L}’\) of pairwise orthogonal \(9 \times 9\) Latin squares to be equivalent if and only if \(\mathcal{L}’\) can be obtained from \(\mathcal{L}\) by some combination of: (i) applying a permutation \(\theta\) to the rows of each of the \(8\) squares in \(\mathcal{L}\), (ii) applying a permutation \(\phi\) to the columns of each square from \(\mathcal{L}\), and (iii) permuting the symbols separately within each square from \(\mathcal{L}\).
We use known properties of the projective planes of order \(9\) to show that, under this equivalence relation, there are \(19\) equivalence classes of complete sets. For each equivalence class, we list the species and transformation sets of the \(8\) Latin squares in a complete set. As this information alone is not sufficient for determining the equivalence class of a given complete set, we provide a convenient method for doing this.

G. Ge 1, L. Zhu1
1Department of Mathematics Suzhou University Suzhou, 215006 P.R, China
Abstract:

It is shown that for any even integer \(u \geq 20\), a Room frame of type \(2^{n}u^1\) exists if and only if \(n \geq u + 1\).

Gena Hahn1, Jozef Siran2
1Département d’Informatiques et de Récherche Operationelle Université de Montréal CP 6128, Succ. A Montréal, Québec Canada H3C 3J7
2Comenius University Bratislava
Abstract:

We show that for infinitely many \(n\), there exists a Cayley graph \(\Gamma\) of order \(n\) in which any two largest cliques have a nonempty intersection. This answers a question of Hahn, Hell, and Poljak. Further, the graphs constructed have a surprisingly small clique number \(c_\Gamma = \left\lfloor \sqrt{2n} \right\rfloor\) (and we do not know if the constant \(\sqrt{2}\) can be made smaller).

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;