Kevin Black1, Daniel Leven2, Stanislaw P. Radziszowski3
1Harvey Mudd College 340 East Foothill Boulevard Claremont, CA 91711
2Rutgers University 23562 BPO WAY Piscataway, NJ 08854
3Department of Computer Science Rochester Institute of Technology Rochester, NY 14623
Abstract:

We derive a new upper bound of \( 26 \) for the Ramsey number \( R(K_5 – P_3, K_5) \), lowering the previous upper bound of \( 28 \). This leaves \( 25 \leq R(K_5 – P_5, K_5) \leq 26 \), improving on one of the three remaining open cases in Hendry’s table, which listed Ramsey numbers for pairs of graphs \( (G, H) \) with \( G \) and \( H \) having five vertices.

We also show, with the help of a computer, that \( R(B_2, B_6) = 17 \) and \( R(B_2, B_7) = 18 \) by full enumeration of \( (B_2, B_6) \)-\emph{good} graphs and \( (B_2, B_7) \)-\emph{good} graphs, where \( B_n \) is the book graph with \( n \) triangular pages.

Chao-Chih Chou1, Meghan Galiardi2, Man Kong3, Sin-Min Lee4, Daniel Perry2
1General Education Center St. John’s University Tamsui, Taipei Shien, Taiwan
2Department of Mathematics Stonehill College Easton, MA 02357, USA
3Department of Electrical Engineering and Computer Science University of Kansas Laurence, KS 66045, USA
4Department of Computer Science San Jose State University San Jose, CA 95192, USA
Abstract:

Let \( G \) be a simple graph with vertex set \( V(G) \) and edge set \( E(G) \), and let \( \mathbb{Z}_2 = \{0,1\} \). Any edge labeling \( f \) induces a partial vertex labeling \( f^+ : V(G) \to \mathbb{Z}_2 \) assigning \( 0 \) or \( 1 \) to \( f^+(v) \), \( v \) being an element of \( V(G) \), depending on whether there are more \( 0 \)-edges or \( 1 \)-edges incident with \( v \), and no label is given to \( f^+(v) \) otherwise. For each \( i \in \mathbb{Z}_2 \), let \( v_f(i) = \lvert \{v \in V(G) : f^+(v) = i\} \rvert \) and let \( e_f(i) = \lvert \{e \in E(G) : f(e) = i\} \rvert \). An edge-labeling \( f \) of \( G \) is said to be edge-friendly if \( \lvert e_f(0) – e_f(1) \rvert \leq 1 \). The edge-balance index set of the graph \( G \) is defined as \( \text{EBI}(G) = \{\lvert v_f(0) – v_f(1) \rvert : f \text{ is edge-friendly}\} \). In this paper, we investigate and present results concerning the edge-balance index sets of \( L \)-products of cycles with stars.

David Cariolaro1
1Department of Mathematical Sciences Xi’an Jiaotong-Liverpool University Suzhou, Jiangsu 215123 China
Abstract:

In [A.G. Chetwynd and A.J.W. Hilton, Critical star multigraphs, Graphs and Combinatorics 2(1986), 209-221], Chetwynd and Hilton started the investigations of the edge-chromatic properties of a particular class of multigraphs, which they called star multigraphs. A star multigraph is a multigraph such that there exists a vertex \( v^* \) that is incident with each multiple edge. Star multigraphs turn out to be useful tools in the study of the chromatic index of simple graphs.

The main goal of this paper is to provide shorter and simpler proofs of all the main theorems contained in the above-mentioned paper. Most simplifications are achieved by means of a formula for the chromatic index recently obtained by the author and by a careful use of arguments involving fans.

Edgar Gilbuena Amaca1, Hossein Shahmohamad1
1School of Mathematical Sciences Rochester Institute of Technology, Rochester, NY 146
Abstract:

The existence of an equivalence subset of rational functions with Fibonacci numbers as coefficients and the Golden Ratio as fixed point is proven. The proof is based on two theorems establishing basic relationships underlying the Fibonacci Sequence, Pascal’s Triangle, and the Golden Ratio.

Andrew Chung-Yeung Lee Sin-Min Lee1, Ho-Kuen Ng2
1E.E.C.S Dept. Dept. of Comp. Sci. Syracuse University San Jose State University Syracuse, NY 13244, USA San Jose, CA 95192, USA
2 Dept. of Mathematics San Jose State University San Jose, CA 95192, USA
Abstract:

The degree set \( \mathcal{D}(G) \) of a graph \( G \) is the set of degrees of its vertices. It has been shown that when the cardinality of \( \mathcal{D}(G) \) is \( 1 \) (i.e., \( G \) is regular) or \( 2 \) (i.e., \( G \) is bi-regular), the balance index set of \( G \) has simple structures. In this work, we determine the balance index sets of unicyclic graphs and subclasses of \( (p, p+1) \) graphs to demonstrate the application of this recent result. In addition, we give an explicit formula for the balance index sets of subclasses of complete tri-bipartite graphs \( G \) (\(|\mathcal{D}(G)| = 3\)). Structural properties regarding the balance index sets of a general graph \( G \) and application examples are also presented.

Meghan Galiardi1, Daniel Perry1, Hsin-Hao Su1
1Department of Mathematics Stonehill College Easton, MA 02357, USA
Abstract:

Let \( G \) be a simple graph with vertex set \( V(G) \) and edge set \( E(G) \), and let \( \mathbb{Z}_2 = \{0,1\} \). Any edge labeling \( f \) induces a partial vertex labeling \( f^+ : V(G) \to \mathbb{Z}_2 \) assigning \( 0 \) or \( 1 \) to \( f^+(v) \), \( v \) being an element of \( V(G) \), depending on whether there are more \( 0 \)-edges or \( 1 \)-edges incident with \( v \), and no label is given to \( f^+(v) \) otherwise. For each \( i \in \mathbb{Z}_2 \), let \( v_f(i) = |\{v \in V(G) : f^+(v) = i\}| \) and \( e_f(i) = |\{e \in E(G) : f(e) = i\}| \). An edge-labeling \( f \) of \( G \) is said to be edge-friendly if \( |e_f(0) – e_f(1)| \leq 1 \). The edge-balance index set of the graph \( G \) is defined as \( \text{EBI}(G) = \{\lvert v_f(0) – v_f(1) \rvert : f \text{ is edge-friendly}\} \). In this paper, we investigate and present results concerning the edge-balance index sets of flux capacitors and \( L \)-products of stars with cycles.

Alexander Nien-Tsu Lee1, Sin-Min Lee2, Sheng-Ping Bill Lo3, Ho Kuen Ng4
1Department of Bioengineering University of California at San Diego La Jolla, California 92092
2Department of Computer Science San Jose State University San Jose, CA 95192
3Cisco Systems, Inc. 170, West Tasman Drive San Jose, CA 95134
4Department of Mathematics San Jose State University San Jose, CA 95192
Abstract:

Let \( G \) be a graph with vertex set \( V(G) \) and edge set \( E(G) \), and let \( A = \{0,1\} \). A labeling \( f: V(G) \to A \) induces a partial edge labeling \( f^*: E(G) \to A \) defined by \( f^*((u, v)) = f(u) \) if and only if \( f(u) = f(v) \) for each edge \( (u, v) \in E(G) \). For \( i \in A \), let \( \text{v}_f(i) = \text{card} \{v \in V(G) : f(v) = i\} \) and \( \text{e}_f(i) = \text{card} \{e \in E(G) : f^*(e) = i\} \). A labeling \( f \) of \( G \) is said to be friendly if \( |\text{v}_f(0) – \text{v}_f(1)| \leq 1 \). The \textbf{balance index set} of the graph \( G \), \( \text{BI}(G) \), is defined as \( \{|\text{e}_f(0) – \text{e}_f(1)| : \text{the vertex labeling } f \text{ is friendly}\} \). We determine the balance index sets of Halin graphs of stars and double stars.

Joel Lathrop1, Stanislaw Radziszowski1
1Department of Computer Science Rochester Institute of Technology
Abstract:

For a graph \( G \), the expression \( G \overset{v}{\rightarrow} (a_1, \ldots, a_r) \) means that for any \( r \)-coloring of the vertices of \( G \) there exists a monochromatic \( a_i \)-clique in \( G \) for some color \( i \in \{1, \ldots, r\} \). The vertex Folkman numbers are defined as \( F_v(a_1, \ldots, a_r; q) = \text{min}\{|V(G)| : G \overset{v}{\rightarrow} (a_1, \ldots, a_r) \text{ and } K_q \not\subseteq G\} \). Of these, the only Folkman number of the form \( F(\underbrace{2, \ldots, 2}; r – 1) \) which has remained unknown up to this time is \( F_v(2, 2, 2, 2, 2; 4) \).

We show here that \( F_v(2, 2, 2, 2, 2; 4) = 16 \), which is equivalent to saying that the smallest \( 6 \)-chromatic \( K_4 \)-free graph has \( 16 \) vertices. We also show that the sole witnesses of the upper bound \( F_v(2, 2, 2, 2, 2; 4) \leq 16 \) are the two Ramsey \( (4, 4) \)-graphs on \( 16 \) vertices.

Spencer P. Hurd1, Dinesh G. Sarvate2
1The Citadel, School of Science and Mathematics, Charleston, Sc, 29409
2College of Charleston, Department of Mathematics, Char- Leston, Sc, 29424
Abstract:

We give cyclic constructions for loop designs with block size \( k = 3, 4, \text{ and } 5 \), and all values of \( v \), and we thereby determine the \((v, \lambda)\) spectrum for LDs with these block sizes. For \( k = 3, 5 \) the \((v, \lambda)\) spectrum for LDs is the same as that for cyclic LDs, but this is not true for \( k = 4 \).

Anurag Agarwal1, Manuel Lopez1, Darren A. Narayan1
1School of Mathematical Sciences, RIT, Rochester, NY 14623-5604
Abstract:

A graph is representable modulo \( n \) if its vertices can be assigned distinct labels from \(\{0,1,2,\ldots,n-1\}\) such that the difference of the labels of two vertices is relatively prime to \( n \) if and only if the vertices are adjacent. The representation number \( \text{rep}(G) \) is the smallest \( n \) such that \( G \) has a representation modulo \( n \). In this paper, we determine the representation number and the Prague dimension (also known as the product dimension) of a complete graph minus a disjoint union of paths.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;