Qingsong Zou1, Guojun Li2, Shuo Li3
1Department of Mathematics, Xidian University, Xi’an, 710071, P.R.China
2School of Mathematics, Shandong University, Jinan, 250100, P.R.China
3 Department of Mathematics, Changji University, Changji, 831100, P.R.China
Abstract:

Let \( G = (V_1, V_2; E) \) be a bipartite graph with \( |V_1| = |V_2| = 2k \), where \( k \) is a positive integer. It is proved that if \( d(x) + d(y) \geq 3k \) for every pair of nonadjacent vertices \( x \in V_1 \), \( y \in V_2 \), then \( G \) contains \( k \) independent quadrilaterals.

L. Volkmann1
1Lehrstuhl IT fiir Mathematik, RWTH Aachen University, 52056 Aachen, Germany
Abstract:

A set \( S \) of vertices of a graph \( G \) is geodetic if every vertex in \( V(G) \setminus S \) is contained in a shortest path between two vertices of \( S \). The geodetic number \( g(G) \) is the minimum cardinality of a geodetic set of \( G \). The geodomatic number \( d_g(G) \) of a graph \( G \) is the maximum number of elements in a partition of \( V(G) \) into geodetic sets.

In this paper, we determine \( d_g(G) \) for some family of graphs, and we present different bounds on \( d_g(G) \). In particular, we prove the following Nordhaus-Gaddum inequality, where \( \overline{G} \) is the complement of the graph \( G \). If \( G \) is a graph of order \( n \geq 2 \), then
\[
d_g(G) + d_g(\overline{G}) \leq n
\]
with equality if and only if \( n = 2 \).

Liang Luo1, Meilian Liang2, Zhenchong Li3
1School of Transportation, Wuhan University of Technology. Wuhan, 430063, China
2School of Mathematics and Information Science, Guangxi University, Nanning, 530004,China
3Guangxi Academy of Sciences Nanning, 530007, China
Abstract:

For given finite simple graphs \( F \) and \( G \), the Ramsey number \( R(F, G) \) is the minimum positive integer \( n \) such that for every graph \( H \) of order \( n \), either \( H \) contains \( F \) or the complement of \( H \) contains \( G \). In this note, with the help of computer, we get that
\[
R(C_5, W_6) = 13, \quad R(C_5, W_7) = 15, \quad R(C_5, W_8) = 17,
\]
\[
R(C_6, W_6) = 11, \quad R(C_6, W_7) = 16, \quad R(C_6, W_8) = 13,
\]
\[
R(C_7, W_6) = 13 \quad \text{and} \quad R(C_7, W_8) = 17.
\]

A. Q. Baig1, M. Imran2
1Government College University, Faisalabad, Pakistan
2Center for Advanced Mathematics and Physics (CAMP), National University of Science and Technology (NUST), Sector H-12, Islamabad, Pakistan
Abstract:

A \((p,q)\)-graph is said to be a permutation graph if there exists a bijection function \( f: V(G) \to \{1, 2, \ldots, p\} \) such that the induced edge function \( h_f: E(G) \to \mathbb{N} \) is defined as follows:
\[
h_f(x_i, x_j) =
\begin{cases}
{}^{f(x_i)}P_{f(x_j)}, & \text{if } f(x_j) < f(x_i); \\ {}^{f(x_j)}P_{f(x_i)}, & \text{if } f(x_i) < f(x_j). \end{cases} \] In this paper, we investigate the permutation labelings of wheel-related graphs.

Rommel Barbosa1, Peter Slater2
1 Instituto de Informatica – UFG Goiania – GO, Brazil
2Department of Mathematics and Department of Computer Science University of Alabama, Huntsville, 35899, USA
Abstract:

Determining whether or not a graph has an efficient dominating set (equivalently, a perfect code) is an NP-complete problem. Here we present a polynomial time algorithm to decide if a given simplicial graph has an efficient dominating set. However, the efficient domination number decision problem is NP-complete for simplicial graphs.

Zhizheng Zhang1, Xiaoli Ye1
1Department of Mathematics, Luoyang Teachers’ College, Luoyang 471022, P. R. China
Abstract:

The purpose of this note is to give two binomial sums with generalized Fibonacci sequences. These results generalize two binomial sums by Kilic and Ionascu in The Fibonacci Quarterly, 48.2(2010), 161-167.

Henry Escuadro1, Futaba Fusgiz-Okamoto2
1Mathematics Department, Juniata College, Huntingdon, PA 16652, USA.
2Mathematics Department, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA.
Abstract:

Let \( G \) be a connected graph of size at least 2 and \( c: E(G) \to \{0, 1, \ldots, k-1\} \) an edge coloring (or labeling) of \( G \) using \( k \) colors (where adjacent edges may be assigned the same color). For each vertex \( v \) of \( G \), the color code of \( v \) with respect to \( c \) is the \( k \)-tuple \( \text{code}(v) = (a_0, a_1, \ldots, a_{k-1}) \), where \( a_i \) is the number of edges incident with \( v \) that are labeled \( i \) (for \( 0 \leq i \leq k-1 \)). The labeling \( c \) is called a detectable labeling if distinct vertices in \( G \) have distinct color codes. The value \( \text{val}(c) \) of a detectable labeling \( c \) of a graph \( G \) is the sum of the colors assigned to the edges in \( G \). The total detection number \( \text{td}(G) \) of \( G \) is defined by \( \text{td}(G) = \min\{\text{val}(c)\} \), where the minimum is taken over all detectable labelings \( c \) of \( G \). Thus, if \( G \) is a connected graph of size \( m \geq 2 \), then \( 1 \leq \text{td}(G) \leq \binom{m}{2} \). We present characterizations of all connected graphs \( G \) of size \( m \geq 2 \) for which \( \text{td}(G) \in \{1, \binom{m}{2}\} \). The total detection numbers of complete graphs and cycles are also investigated.

Sakib A . Mondal1
1Enterprise Analytics Group India Science Lab, General Motors Global R&D, GM Technical Centre India Pvt Ltd, Creator Bldg., ITPL, Whitefield Road, Bangalore – 560 066, INDIA
Abstract:

In this paper we prove that every planar graph without \(5\)- and \(8\)-cycles and without adjacent triangles is \(3\)-colorable.

You Gao1, Liwei Chang1
1 College of Science, Civil Aviation University of China, Tianjin, 300300, P.R. China
Abstract:

A new construction of authentication codes with arbitration using singular pseudo-symplectic geometry on finite fields is given. Some parameters and the probabilities of success for different types of deceptions are computed.

Yaping Mao1, Chengfu Ye2
1Center for Combinatorics and LPMC-TIKLC, Nankai University, Tianjin 300071, P. R. China
2Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, P. R. China
Abstract:

Two graphs are defined to be adjointly equivalent if their complements are chromatically equivalent. By \( h(G,x) \) and \( P(G,\lambda) \) we denote the adjoint polynomial and the chromatic polynomial of graph \( G \), respectively. A new invariant of graph \( G \), which is the fifth character \( R_5(G) \), is given in this paper. Using this invariant and the properties of the adjoint polynomials, we firstly and completely determine the adjoint equivalence class of the graph \( \zeta_n^1 \). According to the relations between \( h(G,x) \) and \( P(G,\lambda) \), we also simultaneously determine the chromatic equivalence class of \( \overline{\zeta_n^1} \).

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;