Aras Erzurumluoglu1, C. A. Rodger2
1Department of Mathematics and Statistics, 221 Parker Hall, Auburn University, Auburn, Alabama 36849-5310
2Department of Mathematics and Statistics, 221 Parker Hall, Auburn University, Auburn, Alabama 36849-5310
Abstract:

We define a new fairness notion on edge-colorings, requiring that the number of vertices in the subgraphs induced by the edges of each color are within one of each other. Given a (not necessarily proper) \( k \)-edge-coloring of a graph \( G \), for each color \( i \in \mathbb{Z}_k \), let \( G[i] \) denote the (not necessarily spanning) subgraph of \( G \) induced by the edges colored \( i \). Let \( v_{i}(G) = |V(G[i])| \). Formally, a \( k \)-edge-coloring of a graph \( G \) is said to be vertex-equalized if for each pair of colors \( i, j \in \mathbb{Z}_k \), \( |v_{i}(G) – v_{j}(G)| \leq 1 \). In this paper, a characterization is found for connected graphs that have vertex-equalized \( k \)-edge-colorings for each \( k \in \{2, 3\} \) (see Corollary 4.1 and Corollary 4.2).

Gerd H. Fricke1, Chris Schroeder1, Sandra M. Hedetniemi2, Stephen T. Hedetniemi2, Professor Emeritus2
1Department of Mathematics, Computer Science, and Physics Morehead State University Morehead, KY 40351
2School of Computing Renu C. Laskar, Professor Emerita Department of Mathematical Sciences Clemson University Clemson, SC 29634
Abstract:

Let \( G = (V, E) \) be a graph. The open neighborhood of a vertex \( v \in V \) is the set \( N(v) = \{u \mid uv \in E\} \) and the closed neighborhood of \( v \) is the set \( N[v] = N(v) \cup \{v\} \). The open neighborhood of a set \( S \) of vertices is the set \( N(S) = \bigcup_{v \in S} N(v) \), while the closed neighborhood of a set \( S \) is the set \( N[S] = \bigcup_{v \in S} N[v] \). A set \( S \subset V \) dominates a set \( T \subset V \) if \( T \subseteq N[S] \), written \( S \rightarrow T \). A set \( S \subset V \) is a dominating set if \( N[S] = V \); and is a minimal dominating set if it is a dominating set, but no proper subset of \( S \) is also a dominating set; and is a \( \gamma \)-set if it is a dominating set of minimum cardinality. In this paper, we consider the family \( \mathcal{D} \) of all dominating sets of a graph \( G \), the family \( \mathcal{MD} \) of all minimal dominating sets of a graph \( G \), and the family \( \Gamma \) of all \( \gamma \)-sets of a graph \( G \). The study of these three families of sets provides new characterizations of the distance-2 domination number, the upper domination number, and the upper irredundance number in graphs.

Sapna Jain1
1Department of Mathematics University of Delhi Delhi 110 007 India
Abstract:

Irregular-spotty-byte error control codes were devised by the author in [2] and their properties were further studied in [3] and [4]. These codes are suitable for semi-conductor memories where an I/O word is divided into irregular bytes not necessarily of the same length. The \(i\)-spotty-byte errors are defined as \(t_i\) or fewer bit errors in an \(i\)-byte of length \(n_i\), where \(1 \leq t_i \leq n_i\) and \(1 \leq i \leq s\). However, an important and practical situation is when \(i\)-spotty-byte errors caused by the hit of high energetic particles are confined to \(i\)-bytes of the same size only which are aligned together or in words errors occur usually in adjacent RAM chips at a particular time. Keeping this view, in this paper, we propose a new model of \(i\)-spotty-byte errors, viz. uniform \(i\)-spotty-byte errors and present a new class of codes, viz. uniform \(i\)-spotty-byte error control codes which are capable of correcting all uniform \(i\)-spotty-byte errors of \(i\)-spotty measure \( \mu \) (or less). The study made in this paper will be helpful in designing modified semi-conductor memories consisting of irregular RAM chips with those of equal length aligned together.

LeRoy B. Beasley1
1Department of Mathematics and Statistics, Utah State University Logan, Utah 84322-3900, USA
Abstract:

Let \( \mathcal{M} \) denote the set of matrices over some semiring. An upper ideal of matrices in \( \mathcal{M} \) is a set \( \mathcal{U} \) such that if \( A \in \mathcal{U} \) and \( B \) is any matrix in \( \mathcal{M} \), then \( A + B \in \mathcal{U} \). We investigate linear operators that strongly preserve certain upper ideals (that is, linear operators on \( \mathcal{M} \) with the property that \( X \in \mathcal{U} \) if and only if \( T(X) \in \mathcal{U} \)). We then characterize linear operators that strongly preserve sets of tournament matrices and sets of primitive matrices. Specifically, we show that if \( T \) strongly preserves the set of regular tournaments when \( n \) is odd or nearly regular tournaments when \( n \) is even, then for some permutation matrix \( P \), \( T(X) = P^{t}XP \) for all matrices \( X \) with zero main diagonal, or \( T(X) = P^{t}X^{t}P \) for all matrices \( X \) with zero main diagonal. Similar results are shown for linear operators that strongly preserve the set of primitive matrices whose exponent is \( k \) for some values of \( k \), and for those that strongly preserve the set of nearly reducible primitive matrices.

Kenjiro OGAWA1, Satoshi TAGUSARI1, Morimasa TSUCHIYA1
1Department of Mathematical Sciences, Tokai University Hiratsuka 259-1292, JAPAN
Abstract:

For a poset \( P = (V(P), \leq_P) \), the strict semibound graph of \( P \) is the graph \( ssb(P) \) on \( V(ssb(P)) = V(P) \) for which vertices \( u \) and \( v \) of \( ssb(P) \) are adjacent if and only if \( u \neq v \) and there exists an element \( x \in V(P) \) distinct from \( u \) and \( v \) such that \( x \leq_P u,v \) or \( u,v \leq_P x \). We prove that a poset \( P \) is connected if

Derek W. Hein1
1Southeern Uran University, Dept. OF MATH., CEDAR Ciry, UT, 84720
Abstract:

In this paper, we revisit LE graphs, find the minimum \( \lambda \) for decomposition of \( \lambda K_n \) into these graphs, and show that for all viable values of \( \lambda \), the necessary conditions are sufficient for LE-decompositions using cyclic decompositions from base graphs.

Jing Li1, Bo Zhou1
1School of Mathematical Sciences, South China Normal University, Guangzhou 510631, P.R. China
Abstract:

We determine the signless Laplacian spectrum for the \( H \)-join of regular graphs \( G_1, \ldots, G_p \). We also find an expression and upper bounds for the signless Laplacian spread of the \( H \)-join of regular graphs \( G_1, \ldots, G_p \).

Jessie Deering1, Teresa W. Haynes1, Stephen T. Hedetniemi1, William Jamieson1
1Department of Mathematics and Statistics East Tennessee State University Johnson City, TN 37614 USA
Abstract:

Placing degree constraints on the vertices of a path yields the definitions of uphill and downhill paths. Specifically, we say that a path \( \pi = v_1, v_2, \ldots, v_{k+1} \) is a downhill path if for every \( i \), \( 1 \leq i \leq k \), \( \deg(v_i) \geq \deg(v_{i+1}) \). Conversely, a path \( \pi = u_1, u_2, \ldots, u_{k+1} \) is an uphill path if for every \( i \), \( 1 \leq i \leq k \), \( \deg(u_i) \leq \deg(u_{i+1}) \). The downhill domination number of a graph \( G \) is defined to be the minimum cardinality of a set \( S \) of vertices such that every vertex in \( V \) lies on a downhill path from some vertex in \( S \). The uphill domination number is defined as expected. We explore the properties of these invariants and their relationships with other invariants. We also determine a Vizing-like result for the downhill (respectively, uphill) domination numbers of Cartesian products.

R. Hollander Shabtai1, Y. Roditty 2
1School of Computer Sciences, Tel Aviv University, Tel Aviv 69978, Israel and Afeka College of Engineering, Tel-Aviv 69460, Israel
2School of Computer Sciences, Tel Aviv University, Tel Aviv 69978, Israel and School of Computer Sciences, The Academic College of Tel-Aviv-Yaffo, Tel-Aviv 61161, Israel.
Abstract:

Set-to-Set Broadcasting is an information distribution problem in a connected graph, \( G = (V, E) \), in which a set of vertices \( A \), called originators, distributes messages to a set of vertices \( B \) called receivers, such that by the end of the broadcasting process each receiver has received the messages of all the originators. This is done by placing a series of calls among the communication lines of the graph. Each call takes place between two adjacent vertices, which share all the messages they have. Gossiping is a special case of set-to-set broadcasting, where \( A = B = V \). We use \( F(A, B, G) \) to denote the length of the shortest sequence of calls that completes the set-to-set broadcast from a set \( A \) of originators to a set \( B \) of receivers, within a connected graph \( G \). \( F(A, B, G) \) is also called the cost of an algorithm. We present bounds on \( F(A, B, G) \) for weighted and for non-weighted graphs.

J. David Taylor1, Lucas C. van der Merwe1
1Department of Mathematics, University of Tennessee at Chattanooga Chattanooga, TN 37403 USA
Abstract:

Let \( \gamma_c(G) \) denote the connected domination number of the graph \( G \). A graph \( G \) is said to be connected domination edge critical, or simply \( \gamma_c \)-critical, if \( \gamma_c(G + e) < \gamma_c(G) \) for each edge \( e \in E(\overline{G}) \). We answer a question posed by Zhao and Cao concerning \( \gamma_c \)-critical graphs with maximum diameter.

E-mail Alert

Add your e-mail address to receive upcoming issues of Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;