M. Hofmeister1
1 Cologne
Abstract:

A graph covering projection is a local graph homeomorphism. Certain partitions of the vertex set of the preimage graph induce a notion of “concreteness”. The concrete graph covering projections will be counted up to isomorphism.

G. B. Khosrovshahi1, F. Vatan1
1Center for Theoretical Physics and Mathematics Atomic Energy Organization of Iran Tehran, Iran
Abstract:

The set of all distinct blocks of a \(t\)-design is referred to as the support of the design and its cardinality is denoted by \(b^*\). In this article (i) the set of all possible \(b^*\)’s for the case of \(3\)-\((8,4,\lambda)\) designs is determined and for each feasible \(b^*\) a design with a minimum \(b\) is produced;(ii) it is shown that a \(2\)-\((8,4,3\lambda)\) design is a \(3\)-\((8,4,\lambda)\) design if and only if it is self-complementary; (iii) it is shown that there are at least \(63\) pairwise non-isomorphic \(3\)-\((8,4,5)\) designs.

Yoshimi EGAWA1, Mikio KANO2, Evelyn L. TAN3
1Department of Applied Mathematics Science University of Tokyo Shinjuku-ku, Tokyo 162 JAPAN
2 Akashi College of Technology Akashi 674 JAPAN
3Department of Mathematics University of the Philippines Diliman, Quezon City 1101 PHILIPPINES
Abstract:

The cycle graph \(C(G)\) of a graph \(G\) has vertices which correspond to the chordless cycles of \(G\), and two vertices of \(C(G)\) are adjacent if the corresponding chordless cycles of \(G\) have at least one edge in common. If \(G\) has no cycle, then we define \(C(G)=\emptyset\), the empty graph. For an integer \(n \geq 2\), we define recursively the \(n\)-th iterated cycle graph \(C^n(G)\) by \(C^n(G)=C(C^{n-1}(G))\). We classify graphs according to their cycle graphs as follows. A graph \(G\) is \emph{cycle-vanishing} if there exists an integer \(n\) such that \(C^n(G)=\emptyset\); and \(G\) is \emph{cycle-periodic} if there exist two integers \(n\) and \(p \geq 1\) such that \(C^{n+p}(G)\cong C^n(G) \neq \emptyset\). Otherwise, \(G\) is cycle-expanding. We characterize these three types of graphs, and give some other results on cycle graphs.

Abstract:

A Latin square of order \(n\) is an \(n \times n\) array such that each of the integers \(1, 2, \ldots, n\) (or any set of \(n\) distinct symbols) occurs exactly once in each row and each column. A Latin square \(L = [l_{i,j}]\) is said to be \underline{commutative} provided that \(l_{i,j} = l_{j,i}\) for all \(i\) and \(j\). Two Latin squares, \(L = [l_{i,j}]\) and \(M = [m_{i,j}]\), are said to have \underline{intersection} \(k\) if there are exactly \(k\) cells \((i,j)\) such that \(l_{i,j} = m_{i,j}\).

Let \(I[n] = \{0, 1, 2, \ldots, n^2-9, n^2-8, n^2-7, n^2-6,n^2\}\), \(H[n] = I[n] \cup \{n^2-7, n^2-4\}\), and \(J[n]\) be the set of all integers \(k\) such that there exists a pair of commutative Latin squares of order \(n$ which have intersection \(k\). In this paper, we prove that \(J[n] = I[n]\) for each odd \(n \geq 7\), \(J[n] = H[n]\) for each even \(n \geq 6\), and give a list of \(J[n]\) for \(n \leq 5\). This totally solves the intersection problem of two commutative Latin squares.

M. Cordero-Vourtsanis1
1 Department of Mathematics Texas Tech University Lubbock, Texas 79409
B. A. Anderson1
1Department of Mathematics Arizona State University Tempe, Arizona 85287
Abstract:

Golomb and Taylor (joined later by Etzion) have modified the notion of a complete Latin square to that of a Tuscan-\(k\) square. A Tuscan-\(k\) square is a row Latin square with the further property that for any two symbols \(a\) and \(b\) of the square, and for each \(m\) from \(1\) to \(k\), there is at most one row in which \(b\) is the \(m^{th}\) symbol to the right of \(a\). One question unresolved by a series of papers of the authors mentioned was whether or not \(n \times n\) Tuscan-\(2\) squares exist for infinitely many composite values of \(n+1\). It is shown here that if \(p\) is a prime and \(p \equiv 7 \pmod{12}\) or \(p \equiv 5 \pmod{24}\), then Tuscan-\(2\) squares of side \(2p\) exist. If \(p \equiv 7 \pmod{12}\), clearly \(2p + 1\) is always composite and if \(p \equiv 5 \pmod{24}\), \(2p+1\) is composite infinitely often. The squares constructed are in fact Latin squares that have the Tuscan-\(2\) property in both dimensions.

Aditya Shastri1
1 Tilak Chonk P.O. Banasthali Vidyapith – 304022 INDIA
Abstract:

It is shown that if \([n] = X_1 \cup X_2 \cup \cdots \cup X_l\) is a partition of \([n]\) and if \(S_t\) is a family of \(t\)-valued functions intersecting on at least one element of \(k\) (circularly) consecutive blocks, then \(|S_t| < t^{n-k}\). If given \(a_1 < a_2 < \cdots < a_y \leq l \), \(\acute{S}_t\) is a family of \(t\)-valued functions intersecting on at least one element of \(X_{a_{1}+m}, X_{a_{2}+m}, \ldots, X_{a_{k}+m}\) for some \(m\) with \(1-a_1 \leq m \leq n – a_k\), then \(|\acute{S}_t| \leq t^{n-k}\). Both these results were conjectured by Faudree, Schelp, and Sós [FSS]. The main idea of our proofs is that of anticlusters introduced by Griggs and Walker [GW] which we discuss in some detail. We also discuss several related intersection theorems about sets, \(2\)-valued functions, and \(t\)-valued functions.

A. Bialostocki1, P. Dierker1
1 Department of Mathematics and Statistics University of Idaho Moscow, Idaho 83843
Abstract:

Let the edges of the complete graph \(K_n\) be \(2\)-colored. A Simple Hamiltonian Cycle is a Hamiltonian cycle in \(K_n\) that is either monochromatic or is a union of two monochromatic paths. The main result of this paper is that if \(n\) is an even integer greater than \(4\), then for every \(2\)-coloring of the edges of \(K_n\), there is a Simple Hamiltonian Cycle in \(K_n\) which is either monochromatic, or is a union of two monochromatic paths, where each path is of even length.

Chong-Keang Lim1, Yee-Hock Peng2
1Department of Mathematics University of Malaya 59100 Kuala Lumpur, Malaysia
2Department of Mathematics University of Agriculture 43400 Serdang, Selangor, Malaysia
Abstract:

Uniquely pseudointersectable graphs are defined; this is closely related to the uniquely intersectable graphs introduced by Alter and Wang [1]. The S-property is necessary but not sufficient for a graph to be uniquely pseudointersectable. This condition is also sufficient for graphs with unique minimum cover. Finally, we show that for supercompact graphs, unique pseudointersectability and unique intersectability are equivalent. Thus we generalize some of the results in [1] to a wider class of graphs.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;