Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Lili Hu1, Chunhui Lai1
1Department of Mathematics, Zhangzhou Teachers College, Zhangzhou, Fujian 363000, P. R. of CHINA.
Abstract:

In this paper, we characterize the potentially \((K_5 – C_4)\)-graphic sequences, where \(K_s – C_4\) is the graph obtained from \(K_5\) by removing four edges of a \(4\)-cycle \(C_4\). This characterization implies a theorem due to Lai \([6]\).

Adel T. Diab1
1 Faculty of Science, Department of Mathematics, Ain Shams University Abbassia, Cairo, Egypt.
Abstract:

A graph is said to be cordial if it has a \(0-1\) labeling that satisfies certain properties. The purpose of this paper is to generalize some known theorems and results of cordial graphs. Specifically, we show that certain combinations of paths, cycles, stars, and null graphs are cordial. Finally, we prove that the torus grids are cordial if and only if its size is not congruent to \(2\) \((mod 4)\).

A.A.G. Ngurah1, E.T. Baskoro1,2, I. Tomescu3,2
1Combinatorial Mathematics Research Group Faculty of Mathematics and Natural Science, Institut Teknologi Bandung Jalan Ganesa 10 Bandung, Indonesia.
2School of Mathematical Sciences, GC University 68-B, New Muslim Town, Lahore, Pakistan.
3Faculty of Mathematics and Computer Science, University of Bucharest Str. Academiei, 14, 010014 Bucharest, Romania.
Abstract:

A graph \(G\) is edge-magic if there exists a bijection \(f\) from \(V(G) \cup E(G)\) to \(\{1, 2, 3, \ldots, |V(G)| + |E(G)|\}\) such that for any edge \(uv\) of \(G\), \(f(u) + f(uv) + f(v)\) is constant. Moreover, \(G\) is super edge-magic if \(V(G)\) receives \(\{1, 2, \ldots, |V(G)|\}\) smallest labels. In this paper, we propose methods for constructing new (super) edge-magic graphs from some old ones by adding some new pendant edges.

K. Uslu1, N. Taskara1, H.H. Gulec1
1Selcuk University, Science Faculty, Department of Mathematics, 42250, Campus, Konya, Turkey
Abstract:

In this study, we consider a generalization of the well-known Fibonacci and Lucas numbers related to combinatorial sums by using finite differences. To write generalized Fibonacci and Lucas sequences in a new direct way, we investigate some new properties of these numbers.

Ali Ahmad1, Imran Javaid2, M.F. Nadeem3
1Department of Mathematics, Govt. College University, Lahore, Pakistan.
2Center for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University Multan, Pakistan
3Abdus Salam School of Mathematical Sciences, GC University, 68-B, New Muslim Toun, Lahore, Pakistan
Abstract:

A graph \(G\) is called edge-magic if there exists a bijective function \(\phi: V(G) \cup E(G) \rightarrow \{1, 2, \ldots, |V(G)| + |E(G)|\}\) such that \(\phi(x) + \phi(xy) + f\phi(y) = c(\phi)\) is a constant for every edge \(xy \in E(G)\), called the valence of \(\phi\). A graph \(G\) is said to be super edge-magic if \(\phi(V(G)) = \{1, 2, \ldots, |V(G)|\}\). The super edge-magic deficiency, denoted by \(\mu_s(G)\), is the minimum nonnegative integer \(n\) such that \(G \cup nK_1\) has a super edge-magic labeling, if such integer does not exist we define \(\mu_s(G)\) to be \(+\infty\). In this paper, we study the super edge-magic deficiency of some families of unicyclic graphs.

Luca Ferrari1, Elisa Pergola2, Renzo Pinzani2, Simone Rinaldi3
1Dipartimento di Scienze Matematiche ed Informatiche, Pian dei Mantellini, 44, 53100, Siena, Italy
2Dipartimento di Sistemi e Informatica, viale Morgagni 65, 50134 Firenze, Italy
3Dipartimento di Scienze Matematiche ed Informatiche, Pian dei Mantellini, 44, 53100, Siena, Italy
Abstract:

In \([FP]\) the \(ECO\) methed and Aigner’s theory of Catalan-like numbers are compared, showing that it is often possible to translate a combinatorial situation from one theory into the other by means of a standard change of basis in a suitable vector space. In the present work we emphasize the soundness of such an approach by finding some applications suggested by the above mentioned translation. More precisely, we describe a presumably new bijection between two classes of lattice paths and we give a combinatorial interpretation to an integer sequence not appearing in \([SI]\).

Morteza Hivadi1, Morteza Esmaeili2
1Dept. of Mathematical Sciences Isfahan University of Technology 84156-83111, Isfahan, Iran
2Dept. of Electrical and Computer Engineering University of Victoria, Victoria, B.C., Canada V8W 3P6
Abstract:

High stopping-distance low-density parity-check \((LDPC)\) product codes with finite geometry \(LDPC\) and Hamming codes as the constituent codes are constructed. These codes have high stopping distance compared to some well-known LDPC codes. As examples, linear \((511, 180, 30)\), \((945, 407, 27)\), \((2263, 1170, 30)\), and \((4095, 2101, 54)\) LDPC codes are designed with stopping distances \(30\), \(27\), \(30\), and \(54\), respectively. Due to their good stopping redundancy, they can be considered as low-complexity codes with very good performance when iterative decoding algorithms are used.

Maref Y.M.Alzoubi1
1Department of Mathematics Yarmouk University Irbid-Jordan
Abstract:

The basis number of a graph \(G\) is defined to be the least positive integer \(d\) such that \(G\) has a \(d\)-fold basis for the cycle space of \(G\).

In this paper, we prove that the basis number of the Cartesian product of different ladders is exactly \(4\). However, if we apply Theorem \(4.1\) of Ali and Marougi \([4]\), which is stated in the introduction as Theorem \(1.1\), we find that the basis number of the circular and Möbius ladders with circular ladders and Möbius ladders is less than or equal to \(5\), and the basis number of ladders with circular ladders and circular ladders with circular ladders is at most \(4\).

M. Bergerson1, A. Miller1, A. Pliml1, V. Reiner1, P. Shearer1, D. Stanton1, N. Switala1
1ScHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MN 55455, USA
Abstract:

It is shown that there are \(\binom{2n-r-1}{n-r}\) noncrossing partitions of an \(n\)-set together with a distinguished block of size \(r\), and \(\binom{n}{k-1}\binom{n-r-1}{k-2}\) of these have \(k\) blocks, generalizing a result of Béna on partitions with one crossing. Furthermore, specializing natural \(q\)-analogues of these formulae with \(q\) equal to certain \(d^{th}\) roots of unity gives the number of such objects having \(d\)-fold rotational symmetry.

A.P. Santhakumaran1, P. Titus2
1Department of Mathematics St. Xavier’s College (Autonomous) Palayamkottai – 627 002, Tamil Nadu, India.
2Department of Mathematics St.Xavier’s Catholic College of Engineering Chunkankadai – 629 807, Tamil Nadu, India.
Abstract:

In this paper, we introduce the concept of geodesic graph at a vertex of a connected graph and investigate its properties. We determine the bounds for the number of edges of the geodesic graph. We prove that an edge of a graph is a cut edge if and only if it is a cut edge of each of its geodesic graphs. Also, we characterize a bipartite graph as well as a geodetic graph in terms of its geodesic graph.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;