Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Behnaz Omoomi1, Ali Pourmiri1
1Department of Mathematical Sciences Isfahan University of Technology 84156-83111, Isfahan, Iran
Abstract:

A local coloring of a graph \(G\) is a function \(c: V(G) \to \mathbb{N}\) having the property that for each set \(S \subseteq V(G)\) with \(2 \leq |S| \leq 3\), there exist vertices \(u,v \in S\) such that \(|c(u) – c(v)| \geq m_S\), where \(m_S\) is the size of the induced subgraph \(\langle S\rangle\). The maximum color assigned by a local coloring \(c\) to a vertex of \(G\) is called the value of \(c\) and is denoted by \(\chi_\ell(c)\). The local chromatic number of \(G\) is \(\chi_\ell(G) = \min\{\chi_\ell(c)\}\), where the minimum is taken over all local colorings \(c\) of \(G\). If \(\chi_\ell(c) = \chi_\ell(G)\), then \(c\) is called a minimum local coloring of \(G\). The local coloring of graphs introduced by Chartrand et al. in \(2003\). In this paper, following the study of this concept, first an upper bound for \(\chi_\ell(G)\) where \(G\) is not complete graphs \(K_4\) and \(K_5\), is provided in terms of maximum degree \(\Delta(G)\). Then the exact value of \(\chi_\ell(G)\) for some special graphs \(G\) such as the cartesian product of cycles, paths and complete graphs is determined.

Anuradha Sharma1, Gurmeet K.Bakshi1, V.C. Dumir1, Madhu Raka1
1Centre for Advanced Study in Mathematics Panjab University Chandigarh INDIA
Abstract:

Explicit expressions for all the primitive idempotents in the ring \(R_{2^n} = {F}_q[x]/(x^{2^n} – 1)\), where \(q\) is an odd prime power, are obtained. Some lower bounds on the minimum distances of the irreducible cyclic codes of length \(2^n\) over \({F}_q\) are also obtained.

A. Abdollahi1
1DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ISFAHAN, ISFAHAN 81746-71441, IRAN; AND INSTITUTE FOR STUDIES IN THEORETICAL PHYSICS AND MATHEMATICS (IPM); TEHRAN, IRAN.
Abstract:

In this note we prove that all connected Cayley graphs of every finite group \(Q \times H\) are \(1\)-factorizable, where \(Q\) is any non-trivial group of \(2\)-power order and \(H\) is any group of odd order.

Xi Yue1, Yang Yuansheng1, Mominul 1, Wang Liping1
1Department of Computer Science Dalian University of Technology Dalian, 116024, P. R. China
Abstract:

A graph \(G\) is called super vertex-magic total labelings if there exists a bijection \(f\) from \(V(G) \cup E(G)\) to \(\{1,2,\ldots,|V(G)| + |E(G)|\}\) such that \(f(v) + \sum_{u \sim v} f(vu) = C\), where the sum is over all vertices \(u\) adjacent to \(v\) and \(f(V(G)) = \{1,2,\ldots,|V(G)|\}\), \(f(E(G)) = \{|V(G)|+1,|V(G)|+2,\ldots,|V(G)|+|E(G)|\}\). \({The Knödel graphs}\) \(W_{\Delta,n}\) have even \(n \geq 2\) vertices and degree \(\Delta\), \(1 \leq \Delta \leq \lfloor\log_2 n\rfloor\). The vertices of \(W_{\Delta,n}\) are the pairs \((i,j)\) with \(i = 1,2\) and \(0 \leq i \leq n/2-1\). For every \(j\), \(0 \leq j \leq n/2-1\), there is an edge between vertex \((1,j)\) and every vertex \((2,(j+2^k-1) \mod (n/2))\), for \(k=0,\ldots,\Delta-1\). In this paper, we show that \(W_{3,n}\) is super vertex-magic for \(n \equiv 0 \mod 4\).

Pu-yan Nie1,2,3
1College of Economics and Trade, Hunan University, Changsha,410079,P.R.China.
2Department of Mathematics, Jinan University, Guangzhou, 510632, P.R.China
3This work is partially supported by National Natural Science Foundation of China
Abstract:

Evolutionary graphs were initially proposed by Lieberman \(et \;al\). and evolutionary dynamics on two levels are recently introduced by Traulsen et al. We now introduce a new type of evolutionary dynamics,evolutionary graphs on two levels, and the fixation probability is analyzed. Some interesting results, evolutionary graphs on two levels are more stable than single level evolutionary graphs, are obtained in this paper.

Dariusz Dereniowski1
1Department of Algorithms and System Modeling, Gdazsisk University of Technology, Poland
Abstract:

A vertex \(k\)-ranking of a graph \(G\) is a function \(c: V(G) \to \{1,\ldots,k\}\) such that if \(c(u) = c(v)\), \(u,v \in V(G)\), then each path connecting vertices \(u\) and \(v\) contains a vertex \(w\) with \(c(w) > c(u)\). If each vertex \(v\) has a list of integers \(L(v)\) and for a vertex ranking \(c\) it holds \(c(v) \in L(v)\) for each \(v \in V(G)\), then \(c\) is called an \(L\)-list \(k\)-ranking, where \(\mathcal{L} = \{L(v) : v \in V(G)\}\). In this paper, we investigate both vertex and edge (vertex ranking of a line graph) list ranking problems. We prove that both problems are NP-complete for several classes of acyclic graphs, like full binary trees, trees with diameter at most \(4\), and comets. The problem of finding vertex (edge) \(\mathcal{L}\)-list ranking is polynomially solvable for paths and trees with a bounded number of non-leaves, which includes trees with diameter less than \(4\).

Miroslav Petrovic1, Bojana Borovicanin1
1Faculty of Science, University of Kragujevac, Radoja Do- manoviéa 12, 84000 Kragujevac, Serbia and Montenegro
Abstract:

In this paper we determine unique graph with largest spectral radius among all tricyclic graphs with \(n\) vertices and \(k\) pendant edges.

Wei-Fan Wang1, Ko-Wei Lih2
1Department of Mathematics, Zhejiang Normal University Jinhua 321004, P. R. China
2Institute of Mathematics, Academia Sinica Nankang, Taipei 115, Taiwan
Abstract:

A new proof is given to the following result of ours. Let \(G\) be an outerplanar graph with maximum degree \(\Delta \geq 3\). The chromatic number \(\chi(G^2)\) of the square of \(G\) is at most \(\Delta+2\), and \(\chi(G^2) = \Delta+1\) if \(\Delta \geq 7\).

M.R. Darafsheh1, A.R. Ashrafi2, M. Khademi3
1Department of Mathematics, Statistics and Computer Science, Faculty of Science, University of Tehran, Tehran, Iran.
2Department of Mathematics, Faculty of Science, University of Kashan, Kashan, Iran.
3Islamic Azad University, South Tehran Branch, Tehran, Iran.
Abstract:

Some designs using the action of the linear fractional groups \(L_2(q)\), \(q = 11, 13, 16, 17, 19, 23\) are constructed. We will show that \(L_2(q)\) or its automorphism group acts as the full automorphism group of each of the constructed designs except in the case \(q = 16\). For designs constructed from \(L_2(16)\), we will show that \(L_2(16)\), \(L_2(16) : 2\), \(L_2(16) : 4\) or \(S_{17}\) can arise as the full automorphism group of the design.

Zheng Wenping1,2, Lin Xiaohui3, Yang Yuansheng3, Yang Xiwu1
1Department of Computer Science, Dalian University of Technology, Dalian, 116024, P. R. China
2School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, P. R. China,
3 Department of Computer Science, Dalian University of Technology, Dalian, 116024, P. R. China
Abstract:

For odd \(n \geq 5\), the Flower Snark \(F_n = (V, E)\) is a simple undirected cubic graph with \(4n\) vertices, where \(V = \{a_i : 0 \leq i \leq n-1\} \cup \{b_i : 0 \leq i \leq n-1\} \cup \{c_i : 0 \leq i \leq 2n-1\}\) and \(E = \{b_ib_{(i+1)\mod(n)}: 0 \leq i \leq n-1\} \cup \{c_ic_{(i+1)\mod(2n)} : 0 \leq i \leq 2n-1\} \cup \{a_ib_i,a_ic_i,a_ic_{n+i} : 0 \leq i \leq n-1\}\). For \(n = 3\) or even \(n \geq 4\), \(F_n\) is called the related graph of Flower Snark. We show that the crossing number of \(F_n\) equals \(n – 2\) if \(3 \leq n \leq 5\), and \(n\) if \(n \geq 6\).

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;