Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Yihui Wen1, Sin-Min Lee2, Hugo Sun3
1Department of Mathematics Suzhou Science and Technology College Suzhou, Jiangsu 215009 People’s Republic of China
2Department of Computer Science San Jose State University San Jose, California 95192 U.S.A.
3Department of Mathematics California State University Fresno, California 93720 U.S.A.
Abstract:

A \((p,q)\)-graph \(G\) in which the edges are labeled \(1,2,3,\ldots,q\) so that the vertex sums are constant, is called supermagic. If the vertex sum mod \(p\) is a constant, then \(G\) is called edge-magic. We investigate the supermagic characteristic of a simple graph \(G\), and its edge-splitting extension \(SPE(G,f)\). The construction provides an abundance of new supermagic multigraphs.

Maref Y.M. Alzoubi1, M.M.M. Jaradat1
1Yarmouk University Department of Mathematics Irbid-Jordan
Abstract:

The basis number of a graph \(G\) is defined to be the least integer \(k\) such that \(G\) has a \(k\)-fold basis for its cycle space. We investigate the basis number of the composition of theta graphs, a theta graph and a path, a theta graph and a cycle, a path and a theta graph, and a cycle and a theta graph.

Liangxia Wan1, Yanpei Liu1
1Department of Mathematics Beijing Jiaotong University, Beijing 100044, P.R.China
Abstract:

We introduce certain types of surfaces \(M_j^n\), for \(j = 1,2,\ldots,11\) and determine their genus distributions. At the basis of joint trees introduced by Liu, we develop the surface sorting method to calculate the embedding distribution by genus.

Sibabrata Ray1, Rajgopal Kannan2, Danyang Zhang3, Hong Jiang4
1Assistant Professor Dept. of Computer Science University of Alabama Tuscaloosa, AL 35487 USA
2Assistant Professor Dept. of Computer Science Louisiana State University Baton Rouge, LA 70803 USA
3Assistant Professor Communications Technology York College City University of New York Jamaica, NY 11451 USA
4Professor Computer Science and Engineering University of Nebraska—Lincoln Lincoln, NE 68588 USA
Abstract:

Network reliability is an important issue in the area of distributed computing. Most of the early work in this area takes a probabilistic approach to the problem. However, sometimes it is important to incorporate subjective reliability estimates into the measure. To serve this goal, we propose the use of the weighted integrity, a measure of graph vulnerability. The weighted integrity problem is known to be NP-complete for most of the common network topologies including tree, mesh, hypercube, etc. It is known to be NP-complete even for most perfect graphs, including comparability graphs and chordal graphs. However, the computational complexity of the problem is not known for one class of perfect graphs, namely, co-comparability graphs. In this paper, we give a polynomial-time algorithm to compute the weighted integrity of interval graphs, a subclass of co-comparability graphs.

Lian-Cui Zuo1,2, Jian-Liang Wu1, Jia-Zhuang Liu1
1School of Mathematics, Shandong University, Jinan, 250100, China
2School of Science, Jinan University, Jinan, 250002, China
Abstract:

The vertex linear arboricity \(vla(G)\) of a graph \(G\) is the minimum number of subsets into which the vertex set \(V(G)\) can be partitioned so that each subset induces a subgraph whose connected components are paths. An integer distance graph is a graph \(G(D)\) with the set of all integers as vertex set and two vertices \(u,v \in {Z}\) are adjacent if and only if \(|u-v| \in D\) where the distance set \(D\) is a subset of the positive integers set. Let \(D_{m,k} = \{1,2,\ldots,m\} – \{k\}\) for \(m > k \geq 1\). In this paper, some upper and lower bounds of the vertex linear arboricity of the integer distance graph \(G(D_{m,k})\) are obtained. Moreover, \(vla(G(D_{m,1})) = \lceil \frac{m}{4} \rceil +1\) for \(m \geq 3\), \(vla(G(D_{8l+1,2})) = 2l + 2\) for any positive integer \(l\) and \(vla(G(D_{4q,2})) = q+2\) for any integer \(q \geq 2\).

Bart De Bruyn1, Pieter Vandecasteele1
1Department of Pure Mathematics and Computer Algebra, Ghent University, Galglaan 2, B-8000 Gent, Belgium,
Abstract:

We determine all spreads of symmetry of the dual polar space \(H^D(2n-1,q^2)\). We use this to show the existence of glued near polygons of type \(H^D(2n_1-1,q^2) \otimes H^D(2n_2-1,q^2)\). We also show that there exists a unique glued near polygon of type \(H^D(2n_1-1,4) \otimes H^D(2n_2-1,4)\) for all \(n_1,n_2 \geq 2\). The unique glued near polygon of type \(H^D(2n-1,4) \otimes Q(2n_2-1,q^2)\) has the property that it contains \(H^D(2n-1,4)\) as a big geodetically closed sub near polygon. We will determine all dense near \((2n+2)\)-gons, \(n \geq 3\), which have \(H^D(2n-1,4)\) as a big geodetically closed sub near polygon. We will prove that such a near polygon is isomorphic to either \(H^D(2n+1,4)\), \(H^D(2n-1,4) \otimes Q(5,2)\) or \(H^D(2n-1,4) \times L\) for some line \(L\) of size at least three.

Gilbert B.Cagaanan1, Sergio R.Canoy,Jr.2
1Related Subjects Department School of Engineering Technology Mindanao State University – Iligan Institute of Technology 9200 Iligan City, Philippines
2Department of Mathematics College of Science and Mathematics Mindanao State University – Higan Institute of Technology 9200 Tligan City, Philippines
Abstract:

Given a connected graph \(G\) and two vertices \(u\) and \(v\) in \(G\), \(I_G[u, v]\) denotes the closed interval consisting of \(u\), \(v\) and all vertices lying on some \(u\)–\(v\) geodesic of \(G\). A subset \(S\) of \(V(G)\) is called a geodetic cover of \(G\) if \(I_G[S] = V(G)\), where \(I_G[S] = \cup_{u,v\in S} I_G[u, v]\). A geodetic cover of minimum cardinality is called a geodetic basis. In this paper, we give the geodetic covers and geodetic bases of the composition of a connected graph and a complete graph.

Marcia R.Cerioli1, Jayme L.Szwarcfiter2
1Universidade Federal do Rio de Janeiro, Instituto de Matemdtica and COPPE, Caixa Postal 68530, 21945-970, Rio de Janeiro, RJ, Brasil,
2Universidade Federal do Rio de Janeiro, Instituto de Matematica, Nticleo de Com- putac#o Eletrénica and COPPE, Caixa Postal 2324, 2001-970, Rio de Janeiro, RJ, Brasil.
Abstract:

Starlike graphs are the intersection graphs of substars of a star. We describe different characterizations of starlike graphs, including one by forbidden subgraphs. In addition, we present characterizations for a natural subclass of it, the starlike-threshold graphs.

J.D. Key1, J. Moori2, B.G. Rodrigues2
1Department of Mathematical Sciences Clemson University Clemson SC 29634, U.S.A.
2School of Mathematics, Statistics and Information Technology University of Natal-Pietermaritzburg Pietermaritzburg 3209, South Africa
Abstract:

We show that permutation decoding can be used, and give explicit PD-sets in the symmetric group, for some of the binary codes obtained from the adjacency matrices of the graphs on \(\binom{n}{3}\) vertices, for \(n \geq 7\), with adjacency defined by the vertices as \(3\)-sets being adjacent if they have zero, one or two elements in common, respectively.

Xianyong Meng1, Lianying Miao2, Bentang Su1, Rensuo Li1
1College of Information Science and| Engineering, Shandong Agriculture University, Taian, Shandong, 27100, China
2College of Science, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, China
Abstract:

In this paper, we have discussed the dynamic coloring of a kind of planar graph. Let \(G\) be a Pseudo-Halin graph, we prove that the dynamic chromatic number of \(G\) is at most \(4\). Examples are given to show the bounds can be attained.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;