Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

M.V. Subbarao1, V.V. Subrahmanya Sastri2
1University of Alberta Edmonton, Alberta TOG 2G1 Canada
2SSS Institute of Higher Learning Anastapur, A.P. 515003 India
Oswaldo Araujo1, Juan Rada1
1Departamento de Matemidticas, Facultad de Ciencias Universidad de Los Andes, 5101 Mérida, Venezuela
Abstract:

Let \(T\) be a chemical tree, i.e. a tree with all vertices of degree less than or equal to \(4\). We find relations for the \(0\)-connectivity and \(1\)-connectivity indices \({}^0\chi(T)\) and \({}^1\chi(T)\), respectively, in terms of the vertices and edges of \(T\). A comparison of these relations with the coefficients of the characteristic polynomial of \(T\) associated to its adjacency matrix is established.

Robert Jajcay1
1Department of Mathematics and Computer Science Indiana State University Terre Haute, IN 47809
Abstract:

Given a regular action of a finite group \(G\) on a set \(V\), we consider the problem of the existence of an incidence structure \(\mathcal{I} = (V, \mathcal{B})\) on the set \(V\) whose full automorphism group \(Aut(\mathcal{I})\) is the group \(G\) in its regular action. Using results on graphical and digraphical regular representations \(([2,7], [1])\), we show the existence of such an incidence structure for all but four small finite groups.

Ju-Yong Xu1, Wan-Di Wei2
1Dept. of Basic Science, Wuhan Urban Construction Institute, Wuhan 430074, Hubei,China
2Dept. of Math. Sichuan University, Chengdu 610064,Sichuan, China
Abstract:

For a finite field \({F} = {F}(q)\), where \(q = p^n\) is a prime power, we will introduce the notion of equivalence of subsets of \(F\) which stems out of the equivalence of cyclic difference sets, and give the formulae for the number of equivalence classes of \(k\)-subsets of \(F\) as well as for the number of equivalence classes of subsets of \(F\) by using Pólya’s theorem of counting.

Feliu Sagols1, Charles J. Colbourn2
1Electrical Engineering CINVESTAV, México
2Computer Science University of Vermont Burlington, VT 05405, U.S.A.
Abstract:

We present an algorithmic construction of anti-Pasch Steiner triple systems for orders congruent to \(9\) mod \(12\). This is a Bose-type method derived from a particular type of \(3\)-triangulations generated from non-sum-one-difference-zero sequences (\(NS1D0\) sequences). We introduce \(NS1D0\) sequences and describe their basic properties; in particular, we develop an equivalence between the problem of finding \(NS1D0\) sequences and a variant of the \(n\)-queens problem. This equivalence, and an algebraic characterization of the \(NS1D0\) sequences that produce anti-Pasch Steiner triple systems, form the basis of our algorithm.

Ping Zhang1
1Department of Mathematics and Statistics Western Michigan University Kalamazoo, MI 49008
Abstract:

For vertices \(u\) and \(v\) in a nontrivial connected graph \(G\), the closed interval \([u,v]\) consists of \(u\), \(v\), and all vertices lying in some \(u-v\) geodesic of \(G\). For \(S \subseteq V(G)\), the set \(I[S]\) is the union of all sets \(I[u,v]\) for \(u,v \in S\). A set \(S\) of vertices of a graph \(G\) is a geodetic set in \(G\) if \(I[S] = V(G)\). The minimum cardinality of a geodetic set in \(G\) is its geodetic number \(g(G)\). A subset \(T\) of a minimum geodetic set \(S\) in a graph \(G\) is a forcing subset for \(S\) if \(S\) is the unique minimum geodetic set containing \(T\). The forcing geodetic number \(f(S)\) of \(S\) in \(G\) is the minimum cardinality of a forcing subset for \(S\), and the upper forcing geodetic number \(f^+(G)\) of the graph \(G\) is the maximum forcing geodetic number among all minimum geodetic sets of \(G\). Thus \(0 \leq f^+(G) \leq g(G)\) for every graph \(G\). The upper forcing geodetic numbers of several classes of graphs are determined. It is shown that for every pair \(a,b\) of integers with \(0 \leq a \leq b\) and \(b \geq 1\), there exists a connected graph \(G\) with \(f^+(G) = a\) and \(g(G) = b\) if and only if \((a, b) \notin \{(1, 1), (2,2)\}\).

Robert B.Gardner1
1Institute of Mathematical and Physical Sctences East Tennessee State University Johnson City, Tennessee 37614 — 0296
Abstract:

We give necessary and sufficient conditions for the existence of a decomposition of the complete graph into stars which admits either a cyclic or a rotational automorphism.

Rajender Parsad1, V.K. Gupta1
1IASRI Library Avenue New Delhi 110012 India
Abstract:

This paper deals with combinatorial aspects of designs for two-way elimination of heterogeneity for making all possible paired comparisons of treatments belonging to two disjoint sets of treatments. Balanced bipartite row-column (BBPRC) designs have been defined which estimate all the elementary contrasts involving two treatments one from each of the two disjoint sets with the same variance. General efficiency balanced row-column designs (GEBRC) are also defined. Some general methods of construction of BBPRC designs have been given using the techniques of reinforcement, deletion (addition) of column or row structures, merging of treatments, balanced bipartite block (BBPB) designs, juxtaposition, etc. Some methods of construction give GEBRC designs also.

Peter Adams1, Abdollah Khodkar1
1Centre for Discrete Mathematics and Computing Department of Mathematics The University of Queensland Queensland 4072 Australia,
Abstract:

A critical set in a Latin square of order \(n\) is a set of entries in a Latin square which can be embedded in precisely one Latin square of order \(n\). Also, if any element of the critical set is deleted, the remaining set can be embedded in more than one Latin square of order \(n\). In this paper, we find smallest weak and smallest totally weak critical sets for all the Latin squares of orders six and seven. Moreover, we computationally prove that there is no (totally) weak critical set in the back circulant Latin square of order five and we find a totally weak critical set of size seven in the other main class of Latin squares of order five.

Parag K.Deb1, N. B.Limaye2
1Department of Mathematics, Cotton College, Guwahati, Assam, 781001, India
2Department of Mathematics, University of Mumbai, 400098, India
Abstract:

In this paper, we give the following labelings:

  1. Elegant labelings of triangular snakes \(\Delta_{n}\) , \(n \equiv 0,1,2 \mod 4\).
  2. Near-elegant labeling of triangular snakes \(\Delta_{n}\) when \(n \equiv 3 \mod 4\), which are not elegant.
  3. Elegant and near-elegant labelings of some of the theta graphs \(\theta_{n,n}\) when \(n = 1, 2, 3\).
  4. Harmonious labelings of helms \(H_n\) when \(n\) is even.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;