Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Stefano Marcugini1, Alfredo Milani1, Fernanda Pambianco1
1Dipartimento di Matematica e Informatica, Universita degli Studi di Perugia, Via Vanvitelli 1, 06123 Perugia Italy
Abstract:

A linear \([n,k,d]_q\) code \(C\) is called NMDS if \(d(C) = n – k\) and \(d(C^{\perp}) = k\). In this paper, the classification of the \([n,3,n-k]_q\) NMDS codes is given for \(q = 7,8,9\). It has been found using the correspondence between \([n,3,n-k]_q\) NMDS codes and \((n,3)\)-arcs of \(\mathrm{PG}(2,q)\).

Tay-Woei Shyu1, Chiang Lin2
1Department of Banking and Finance Kai Nan University Lu-Chu, Tao-Yuan, Taiwan 338, R.O.C.
2Department of Mathematics National Central University Chung-Li, Taiwan 320, R.O.C.
Abstract:

A path in a digraph is antidirected if the two adjacent edges of the path have opposing orientations. In this paper, we give a necessary and sufficient condition for the edges of the complete symmetric graph to be decomposed into isomorphic antidirected paths.

Giorgio Faina1, Massimo Giulietti 1
1Dipartimento di Matematica e Informatica Universita degli Studi di Perugia Via Vanvitelli, 1 06123 Perugia, Italy
Abstract:

The aim of this note is to provide a programme for the Computer Algebra package MAGMA, which is suitable to decode one-point Goppa codes defined from Hermitian curves.

Giovanni Lo Faro1, Antoinette Tripodi2
1Department of Mathematics, University of Messina Contrada Papardo,31-98166 Sant’Agata, Messina, Italy
2Department of Mathematics, University of Messina Contrada Papardo,31-98166 Sant’Agata, Messina, Italy
Abstract:

In this article, the intersection problem for twin bowtie and near bowtie systems is completely solved.

Haruko Okamura1
1Department of Information Science and Systems Engineering Konan University, Okamoto Kobe 658-8501, Japan
Gerard J.Chang1, Su-tzu Juan1, Daphne D-F.Liu2
1Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan.
2Department of Mathematics and Computer Science, California State University, Los Angeles, Los Angeles, CA 90032, USA.
Abstract:

Given a graph, a no-hole \(2\)-distant coloring (also called \(N\)-coloring) is a function \(f\) that assigns to each vertex a non-negative integer (color) such that the separation of the colors of any pair of adjacent vertices must be at least \(2\), and all the colors used by \(f\) form a consecutive set (the no-hole assumption). The minimum consecutive \(N\)-span of \(G\), \(csp(G)\), is the minimum difference of the largest and the smallest colors used in an \(N\)-coloring of \(G\), if there exists such a coloring; otherwise, define \(csp(G) = \infty\). Here we investigate the exact values of \(csp(G)\) for unit interval graphs (also known as \(1\)-unit sphere graphs). Earlier results by Roberts [18] indicate that if \(G\) is a unit interval graph on \(n\) vertices, then \(csp_1(G)\) is either \(2\chi(G) – 1\) or \(2\chi(G) – 2\), if \(n > 2\chi(G) – 1\); \(csp_1(G) = \infty\), if \(n < 2\chi(G) – 1\), where \(\chi(G)\) denotes the chromatic number. We show that in the former case (when \(n > 2\chi(G) – 1\)), both values of \(csp_1(G)\) are attained, and give several families of unit interval graphs such that \(csp_1(G) = 2\chi(G) – 2\). In addition, the exact values of \(csp_1(G)\) are completely determined for unit interval graphs with \(\chi(G) = 3\).

Richard C. Brewster1, Gary MacGillivray2
1Dept. of Math. and Stats. Capilano College 2055 Purcell Way N. Vancouver, B.C. Canada V7J 3H5
2 Dept. of Math. and Stats. University of Victoria Victoria, B.C. Canada V8W 2Y2
Abstract:

Let \(G\) be a graph. Let \(\gamma\) denote the minimum cardinality of a dominating set in \(G\). Let \(\beta\), respectively \(i\), denote the maximum, respectively minimum, cardinality of a maximal independent set in \(G\). We show \(\gamma + \Delta \geq \left\lceil {2\sqrt{n}-1} \right\rceil\), where \(n\) is the number of vertices of \(G\). A straightforward construction shows that given any \(G’\) there exists a graph \(G\) such that \(\gamma(G) + \Delta(G) = \left\lceil {2\sqrt{n}-1} \right\rceil\) and \(G’\) is an induced subgraph of \(G\), making classification of these \(\gamma+\Delta\) minimum graphs difficult.

We then focus on the subclass of these graphs with the stronger condition that \(\beta + \Delta = \left\lceil {2\sqrt{n}-1} \right\rceil\). For such graphs \(i = \beta\) and thus the graphs are well-covered. If \(G\) is a graph with \(\beta + \Delta = \left\lceil {2\sqrt{n}-1} \right\rceil\), we have \(\beta = \left\lceil \frac{\sqrt{n}}{\Delta+1} \right\rceil\). We give a catalogue of all well-covered graphs with \(\Delta \leq 3\) and \(\beta = \left\lceil \frac{\sqrt{n}}{\Delta+1} \right\rceil\). Again we establish that given any \(G’\) we can construct \(G\) such that \(G’\) is an induced subgraph of \(G\) and \(G\) satisfies \(\beta = \left\lceil \frac{\sqrt{n}}{\Delta+1} \right\rceil\). In fact, the graph \(G\) can be constructed so that \(\beta(G) + \Delta(G) = \left\lceil {2\sqrt{n}-1} \right\rceil\). We remark that \(\Delta(G)\) may be much larger than \(\Delta(G’)\).

We conclude the paper by analyzing integer solutions to \(\left\lceil \frac{n}{\Delta+1} \right\rceil + \Delta = \left\lceil {2\sqrt{n}-1} \right\rceil\). In particular, for each \(n\), the values of \(\Delta\) that satisfy the equation form an interval. When \(n\) is a perfect square, this interval contains only one value, namely \(\sqrt{n}\). For each \((n, \Delta)\) solution to the equation, there exists a graph \(G\) with \(n\) vertices, maximum degree \(\Delta\), and \(\beta = \left\lceil \frac{\sqrt{n}}{\Delta+1} \right\rceil\).

T.E. Hall1, C.F. Osborne2, A.Z. Tirkel1
1Department of Mathematics and Statistics Monash University P.O. Box 28M Victoria 3800 Australia
2Department of Physics Monash University P.O. Box 28M Victoria 3800 Australia
Abstract:

We construct a family of \(p-1\) square \(p \times p\) matrices (\(p\) is any prime) whose periodic cross-correlation values are uniformly \(-p, 0, +p\) between all pairs of the matrices in the family. For every one of the matrices in the family, all the off-peak autocorrelation values are \(-p\) and \(0\), while the single peak value is \(p(p-1)\). For \(p = 127\) (where the values \(-p, 0, +p\) are below \(1\%\) of the size \(p^2\) of the matrices) utilization of this construction has resulted in the superimposed embedding of twelve of the matrices (as watermarks) in the standard image “Lenna” and their subsequent retrieval without recourse to the unmarked image.

Iwao Sato1
1Oyama National College of Technology Oyama, Tochigi 323-0806 Japan
Abstract:

Let \(D\) be a connected symmetric digraph, \(\Gamma\) a group of automorphisms of \(D\), and \(A\) a finite abelian group with some specified property. We discuss the number of isomorphism classes of \(g\)-cyclic \(A\)-covers of \(D\) with respect to a group \(\Gamma\) of automorphisms of \(D\). Furthermore, we enumerate the number of \(I\)-isomorphism classes of \(g\)-cyclic \(\mathbb{Z}_{2^m}\)-covers of \(D\) for the cyclic group \(\mathbb{Z}_{2^m}\) of order \(2^m\), where \(I\) is the trivial subgroup of \(Aut(D)\).

S.A. Choudum1, N. Priya1
1Department of Mathematics Indian Institute of Technology, Madras Chennai – 600 036, INDIA
Abstract:

We characterize tough-maximum graphs, that is, graphs having maximum number of edges among all graphs with given number of vertices and toughness.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;