Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

H.L. Abbott1, D.R. Hare2
1DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF ALBERTA, ED- MONTON, ALBERTA, CANADA, T6G 2G1
2DEPARTMENT OF MATHEMATICS AND STATISTICS, OKANAGAN UNIVERSITY COL- LEGE, KELOWNA, BC, CANADA, VIV 1V7
Abstract:

A family \(\mathcal{F}\) of finite sets is said to have property \(B\) if there exists a set \(S\) such that \(0 < |{S} \cap F| < |F|\) for all \(F \in \mathcal{F}\). Denote by \(m_N(n)\) the least integer \(m\) for which there exists a family \(\mathcal{F}\) of \(m\) \(n\)-element subsets of a set \(V\) of size \(N\) such that \(\bigcup \mathcal{F} = V\) and which does not have property \(B\). We give constructions which yield upper bounds for \(m_N(4)\) for certain values of \(N\).

Kiyoshi Yoshimoto1
1Department of Mathematics, College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan
Abstract:

Let \(G\) be a connected graph and \(\mathcal{V}^*\) the set of all spanning trees except stars in \(G\). An edge in a spanning tree is called `inner’ if the edge is not incident to endvertices. Define an adjacency relation in \(\mathcal{V}^*\) as follows: two spanning trees \(t_1\) and \(t_2 \in \mathcal{V}^*\) are called to be adjacent if there exist inner edges \(e_i \in E(t_i)\) such that \(t_1 – e_1 = t_2 – e_2\). The resultant graph is a subgraph of the tree graph, and we call it simply a trunk graph. The purpose of this paper is to show that if a \(2\)-connected graph with at least five vertices is \(k\)-edge connected, then its trunk graph is \((k-1)\)-connected.

Neville Robbins1
1Mathematics Department San Francisco State University San Francisco, CA 94132 USA
Abstract:

Let \(\tau(n)\) denote Ramanujan’s tau function. We obtain an identity that involves \(\tau(n)\) and \(\sigma(n)\), as well as some apparently new congruence properties of \(\tau(n)\) with respect to the moduli \(23\) and \(5\).

P.Mark Kayll1
1Department of Mathematical Sciences, University of Montana Missoula MT 59812-1032, USA
Abstract:

For loopless multigraphs \(G\), the total choice number is asymptotically equal to its fractional counterpart as the latter invariant tends to infinity. If \(G\) is embedded in the plane, then the edge-face and entire choice numbers exhibit the same “asymptotically good” behaviour. These results are based mainly on an analogous theorem of Kahn [5] for the list-chromatic index. Together with work of Kahn and others, our three results give a complete answer to a natural question: which of the seven invariants associated with list-colouring the nonempty subsets of \(\{V, E, F\}\) are asymptotically good?

Jian Shen1, D.A. Gregory1
1Department of Mathematics and Statistics Queen’s University at Kingston K7L 3N6 Canada
Abstract:

In 1970, Behzad, Chartrand and Wall conjectured that the girth of every \(r\)-regular digraph \(G\) of order \(n\) is at most \(\left\lceil \frac{n}{r} \right\rceil\). The conjecture follows from a theorem of Menger and Dirac if \(G\) has strong connectivity \(x = r\). We show that any digraph with minimum in-degree and out-degree at least \(r\) has girth at most \(\left\lceil \frac{n}{r} \right\rceil\) if \(\kappa = r – 1\). We also find from the literature a family of counterexamples to a conjecture of Seymour.

G.L. Chia1, Chee-Kit Ho1
1Institute of Mathematical Sciences University of Malaya 50603 Kuala Lumpur Malaysia
Abstract:

In this paper, we give an alternative proof for the fact that the graph obtained by overlapping the cycle \(C_m\) (\(m \geq 3\)) and the complete bipartite graph \(K_{2,s}\) (\(s \geq 1\)) at an edge is uniquely determined by its chromatic polynomial. This result provides a partial solution to a question raised in [7].

Masakazu Nihei1
1Fujishiro High School Fujishiro, Ibaraki, 300-1537 Japan
Abstract:

Let \(G\) be a simple graph with \(n\) vertices. \(p(G,k)\) denotes the number of ways in which one can select \(k\) independent edges in \(G\) (\(k \geq 1\)). Let \(p(G,0) = 1\) for all \(G\).
The matching polynomial \(\alpha(G)\) of a graph \(G\) is given by:
\[\alpha(G) = \alpha(G,x) = \sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k p(G,k) x^{n-2k}\]

In this article, we give the matching polynomials of the complete \(n\)-partite graph with a differential operator.

Andrea Hackmann1, Arnfried Kemnitz2
1DISKRETE MATHEMATIK TECHNISCHE UNIVERSITAT BRAUNSCHWEIG POCKELSSTR. 14 D-38106 BRAUNSCHWEIG GERMANY
2DisKRETE MATHEMATIK TECHNISCHE UNIVERSITAT BRAUNSCHWEIG POCKELSSTR. 14 D-38106 BRAUNSCHWEIG GERMANY
Abstract:

The List Edge Coloring Conjecture states that for every graph, the chromatic index equals the choice index. We prove the conjecture for outerplanar graphs with maximum degree at least five.

F. Comellas1, M. Mitjana2
1Departament de Matematica Aplicada i Telematica, UP Cc Campus Nord, C3, 08034 Barcelona, Catalonia, Spain.
2Departament de Matematica Aplicada I, UPC c/ Gregorio Maranién 44, 08028 Barcelona, Catalonia, Spain
Abstract:

Cycle prefix digraphs are a class of Cayley coset graphs with many remarkable properties, such as:Symmetry Large number of nodes for a given degree and diameter Simple shortest path routing Hamiltonicity Optimal connectivity Others.
In this paper, we show that the cycle prefix digraphs, like the Kautz digraphs, contain cycles of all lengths \(l\), with \(l\) between two and \(N\), the order of the digraph, except for \(N-1\).

Sheng Bau1
1University of Natal, Pietermaritzburg, South Africa
Abstract:

Let \(G\) be a cubic bipartite plane graph that has a perfect matching. If \(M\) is any perfect matching of \(G\), then \(G\) has a face that is \(M\)-alternating.If \(f\) is any face of \(G\), then there is a perfect matching \(M\) such that \(f\) is \(M\)-alternating.There is a simple algorithm for visiting all perfect matchings of \(G\) beginning at one.
There are infinitely many cubic plane graphs that have perfect matchings but whose matching transformation graphs are completely disconnected.
Several problems are proposed.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;