Ars Combinatoria - Cover

Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Asim Naseem1, Khurram Shabbir1, M. Ramzan1
1Govt. College University, Lahore, Pakistan.
Abstract:

Let \(G\) be a simple connected graph with vertex set \(V\) and diameter \(d\). An injective function \(c: V\rightarrow \{1,2,3,\ldots\}\) is called a radio labeling of \(G\) if \({|c(x) c(y)|+d(x,y)\geq d+1}\) for all distinct \(x,y\in V\), where \(d(x,y)\) is the distance between vertices \(x\) and \(y\). The largest number in the range of \(c\) is called the span of the labeling \(c\). The radio number of \(G\) is the minimum span taken over all radio labelings of \(G\). For a fixed vertex \(z\) of \(G\), the sequence \((l_1,l_2,\ldots,l_r)\) is called the level tuple of \(G\), where \(l_i\) is the number of vertices whose distance from \(z\) is \(i\). Let\(J^k(l_1,l_2,\ldots,l_r)\) be the wedge sum (i.e. one vertex union) of \(k\geq2\) graphs having same level tuple \((l_1,l_2,\ldots,l_r)\). Let \(J(\frac{l_1}{l’_1},\frac{l_2}{l’_2},\ldots,\frac{l_r} {l’_r})\) be the wedge sum of two graphs of same order, having level tuples  \((l_1,l_2,\ldots,l_r)\) and \((l’_1,l’_2,\ldots,l’_r)\). In this paper, we compute the radio number for some sub-families of \(J^k(l_1,l_2,\ldots,l_r)\) and \(J(\frac{l_1}{l’_1},\frac{l_2}{l’_2},\ldots,\frac{l_r}{l’_r})\).

S. Gomathi1, P. Venugopal1, T. Arputha Jose1
1Department of Mathematics, SSN College of Engineering, Kalavakkam, India.
Abstract:

An antipodal labeling is a function \(f\ \)from the vertices of \(G\) to the set of natural numbers such that it satisfies the condition \(d(u,v) + \left| f(u) – f(v) \right| \geq d\), where d is the diameter of \(G\ \)and \(d(u,v)\) is the shortest distance between every pair of distinct vertices  \(u\) and \(v\) of \(G.\) The span of an antipodal labeling \(f\ \)is \(sp(f) = \max\{|f(u) – \ f\ (v)|:u,\ v\, \in \, V(G)\}.\) The antipodal number of~G, denoted by~an(G), is the minimum span of all antipodal labeling of~G. In this paper, we determine the antipodal number of Mongolian tent and Torus grid.

By:

Sizhong Zhou\(^{1,*}\)

Abstract:

A graph \(G\) is called a fractional ID-\((g,f)\)-factor-critical covered graph if for any independent set \(I\) of \(G\) and for every edge \(e\in E(G-I)\), \(G-I\) has a fractional \((g,f)\)-factor \(h\) such that \(h(e)=1\). We give a sufficient condition using degree condition for a graph to be a fractional ID-\((g,f)\)-factor-critical covered graph. Our main result is an extension of Zhou, Bian and Wu’s previous result [S. Zhou, Q. Bian, J. Wu, A result on fractional ID-\(k\)-factor-critical graphs, Journal of Combinatorial Mathematics and Combinatorial Computing 87(2013)229–236] and Yashima’s previous result [T. Yashima, A
degree condition for graphs to be fractional ID-\([a,b]\)-factor-critical, Australasian Journal of Combinatorics 65(2016)191–199].

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;