Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

J.E. Cottingham1, R.D. Ringeisen2
1IQ Interactive P.O, Box 147 Clemson, SC 29633-0147
2Office of the Vice Chancellor for Academic Affairs East Carolina University Greenville, NC 27858-4353
Abstract:

Given a good drawing of a graph on some orientable surface, there exists a good drawing of the same graph with one more or one less crossing on an orientable surface which can be exactly determined. Our methods use a new combinatorial representation for drawings. These results lead to bounds related to the Thrackle Conjecture.

Neville Robbins1
1Mathematics Department San Francisco State University San Francisco, CA 94132
J.L. Allston1, M.J. Grannell2, T.S. Griggs2, K.A.S. Quinn2, R.G. Stanton3
1National Research Council of Canada 435 Ellice Avenue, Winnipeg Manitoba, R3B 1Y6 Canada
2Department of Pure Mathematics The Open University Walton Hall, Milton Keynes, MKT GAA United Kingdom
3Department of Computer Science University of Manitoba Winnipeg, Manitoba, R3T 2N2 Canada
Abstract:

The minimum number of incomplete blocks required to cover, exactly \(\lambda\) times, all \(t\)-element subsets from a set \(V\) of cardinality \(v\) (\(v > t\)) is denoted by \(g(\lambda, t; v)\). The value of \(g(2, 2; v)\) is known for \(v = 3, 4, \ldots, 11\). It was previously known that \(13 \leq g(2, 2; 12) \leq 16\). We prove that \(g(2, 2; 12) \geq 14\).

Maria Kwasnik1, Iwona Wloch2
1Institute of Mathematics, Technical University of Szczecin al. Piastéw 48/49, 70-810 Szczecin, Poland
2Department of Mathematics, Technical University of Rzeszow W.Pola 2. P.O. Boz 85, 35 – 359 Rzeszéw, Poland
Abstract:

In [8] a graph representation of the Fibonacci numbers \(F_n\) and Lucas numbers \(F_y^*\) was presented. It is interesting to know that they are the total numbers of all stable sets of undirected graphs \(P_n\) and \(C_n\), respectively. In this paper we discuss a more general concept of stable sets and kernels of graphs. Our aim is to determine the total numbers of all \(k\)-stable sets and \((k, k-1)\)-kernels of graphs \(P_n\) and \(C_n\). The results are given by the second-order linear recurrence relations containing generalized Fibonacci and Lucas numbers. Recent problems were investigated in [9], [10].

Marco Buratti1
1Dipartimento di Ingegneria Elettrica, Universita’ de L’Aquila, 67040 Poggio di Roio (Aq), Italy
Abstract:

We give a constructive and very simple proof of a theorem by Chech and Colbourn [7] stating the existence of a cyclic \((4p, 4, 1)\)-BIBD (i.e. regular over \({Z}_{4p}\)) for any prime \(p \equiv 13 \mod 24\). We extend the theorem to primes \(p \equiv 1 \mod 24\) although in this case the construction is not explicit. Anyway, for all these primes \(p\), we explicitly construct a regular \((4p, 4, 1)\)-BIBD over \({Z}_{2}^{2} \oplus {Z}_p\).

K.M. Kathiresan1
1Department of Mathematics Ayya Nadar Janaki Ammal College Sivakasi — 626 124 INDIA.
Abstract:

In this paper, we prove the gracefulness of a new class of graphs denoted by \(K_{n}\otimes S_{2^{{n-1}}-\binom{n}{2}}\).
We also prove that the graphs consisting of \(2m + 1\) internally disjoint paths of length \(2r\) each, connecting two fixed vertices, are also graceful.

Wang Min1, Li Guo-jun2, Liu Ai-de3
1Department of Mathematics Yantai University Yantai 264005, China
2Department of Mathematics and Systems Science Shandong Unniversity Jinan 250100, China
3Department of Mathematics Yantai Teachers’ College Yantai 264025, China
Abstract:

Erdős and Sésg conjectured in 1963 that if \(G\) is a graph of order \(p\) and size \(q\) with \(q > \frac{1}{2}p(k-1)\), then \(G\) contains every tree of size \(k\). This is proved in this paper when the girth of the complement of \(G\) is greater than \(4\).

Arthur T. Benjamin1, Jennifer J. Quinn2
1 DEPARTMENT OF MATHEMatTics, HARVEY Mupp CoLLEGE, 1250 DARTMOUTH Av- ENUE, CLAREMONT, CA 91711
2DEPARTMENT OF MATHEMATICS, OCCIDENTAL COLLEGE, 1600 CAMPUS DRIVE, Los ANGELES, CA 90041.
Abstract:

Using path counting arguments, we prove
\(min\{\binom{x_1+x_2+y_1+y_2}{x_1,x_2,(y_1+y_2)},\binom{(x_1+x_2+y_1+y_2)}{(x_1+x_2),y_1,y_2}\}\leq\binom{x_1+y_1}{x_1}\binom{x_1+y_2}{x_1}\binom{x_2+y_1}{x_2}\binom{x_2+y_2}{x_2}\)

This inequality, motivated by graph coloring considerations, has an interesting geometric interpretation.

R.J.R. Abel1, F.E. Bennett2, H. Zhang3, L. Zhu4
1School of Mathematics University of New South Wales Kensington, NSW 2033, Australia
2Department of Mathematics Mount Saint Vincent University Halifax, Nova Scotia B3M 2J6, Canada
3Computer Science Department The University of Iowa Towa City, IA 52242, U.S. A.
4Department of Mathematics Suzhou University Suzhou 215006, China
Abstract:

The existence of holey self-orthogonal Latin squares with symmetric orthogonal mates (HSOLSSOMs) of types \(h^n\) and \(1^{n}u^1\) is investigated. For type \(h^n\), new pairs of \((h, n)\) are constructed so that the possible exceptions of \((h, n)\) for the existence of such HSOLSSOMs are reduced to \(11\) in number. Two necessary conditions for the existence of HSOLSSOMs of type \(1^{n}u^1\) are (1) \(n \geq 3u + 1\) and (2) \(n\) must be even and \(u\) odd. Such an HSOLSSOM gives rise to an incomplete SOLSSOM. For \(3 \leq u \leq 15\), the necessary conditions are shown to be sufficient with seven possible exceptions. It is also proved that such an HSOLSSOM exists whenever even \(n \geq 5u + 9\) and odd \(u \leq 9\).

Marian Trenkler1
1 University of P.J. Safarik Jesenné 5 041 54 Koiice Slovakia
Abstract:

We prove: A connected magic graph with \(n\) vertices and \(q\) edges exists if and only if \(n = 2\) and \(q = 1\) or \(n \geq 5\) and \(\frac{5n}{4} < q < \frac{n(n-1)}{2} \).

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;