Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

P. Horak1, A. Rosa2, J. SIRAN3
1 Kuwait UNIVERSITY
2McMAsTER UNIVERSITY
3SLovAK TECHNICAL UNIVERSITY
Ping Wang1
1Department of Mathematics, Computing and Information System St. Francis Xavier University Antigonish, Nova Scotia, Canada
Abstract:

A \((n,5)\)-cage is a minimal graph of regular degree \(n\) and girth \(5\). Let \(f(n,5)\) denote the number of vertices in a \((n,5)\)-cage. The best known example of an \((n,5)\)-cage is the Petersen graph, the \((3,5)\)-cage. The \((4,5)\)-cage is the Robertson graph, the \((7,5)\)-cage is the Hoffman-Singleton graph, the \((6,5)\)-cage was found by O’Keefe and Wong~[2] and there are three known \((5,5)\)-cages. No other \((n,5)\)-cages are known for \(n \geq 8\). In this paper, we will use a graph structure called remote edges and a set of mutually orthogonal Latin squares to give an upper bound of \(f(n,5)\) for \(n = 2^k+1\).

John Gimbel1, Michael A.Henning2, Zsolt Tuza 3
1 Mathematical Sciences University of Alaska Fairbanks, Alaska 99775-1110
2 Department of Mathematics University of Natal Private Bag X01 Pietermaritzburg 3209 South Africa
3Computer and Automation Institute Hungarian Academy of Sciences H-1111 Budapest Kende u. 13-17, Hungary
Abstract:

Let \(S\) be a set of graphs on which a measure of distance (a metric) has been defined. The distance graph \(D(S)\) of \(S\) is that graph with vertex set \(S\) such that two vertices \(G\) and \(H\) are adjacent if and only if the distance between \(G\) and \(H\) (according to this metric) is \(1\). A basic question is the determination of which graphs are distance graphs. We investigate this question in the case of a metric which we call the switching distance. The question is answered in the affirmative for a number of classes of graphs, including trees and all cycles of length at least \(4\). We establish that the union and Cartesian product of two switching distance graphs are switching distance graphs. We show that each of \(K_3\), \(K_{2,4}\) and \(K_{3,3}\) is not a switching distance graph.

B. Hartnell1, C.A. Whitehead2
1 Saint Mary’s University, Halifax, N.S.
2 University of London, Goldsmiths College, U.K.
Abstract:

A set \(\mathcal{P} \subseteq V(G)\) is a \(k\)-packing of a graph \(G\) if for every pair of vertices \(u,v \in P\), \(d(u,v) \geq k+1\). We define a graph \(G\) to be \(k\)-equipackable if every maximal \(k\)-packing of \(G\) has the same size. In this paper, we construct, for \(k \leq 1\), an infinite family \(\mathcal{F}_k\) of \(k\)-equipackable graphs, recognizable in polynomial time. We prove further that for graphs of girth at least \(4k+4\), every \(k\)-equipackable graph is a member of \(\mathcal{F}_k\).

Mordechai Lewin 1
1Department of Mathematics Technion, IIT Haifa 32000 Israel
W.C. Shiu1, Y.P. Tang1
1Department of Mathematics Hong Kong Baptist University 224, Waterloo Road Kowloon, Hong Kong
Abstract:

An \(m \times n\) ideal matrix is a \(3\)-periodic \(m \times n\) binary matrix which satisfies the following two conditions: (1) each column of this matrix contains precisely one \(1\) and (2) if it is visualized as a dot pattern (with each dot representing a \(1\)), then the number of overlapping dots at all actual shifts are \(1\) or \(0\). Let \(s(n)\) denote the smallest integer \(m\) such that an \(m \times n\) ideal matrix exists. In this paper, we reduce the upper bound of \(s(n)\) which was found by Fung, Siu and Ma. Also, we list an upper bound of \(s(n)\) for \(14 \leq n \leq 100\).

Charlie H.Cooke1
1 Department of Mathematics and Statistics Old Dominion University Norfolk, Virginia 23529
Abstract:

I. Several unbiased tournament schedules for round robin doubles tennis are presented, in a form which can be useful to the urban league tournament director. The unbiased tournament affords less restriction than does the usual spouse-avoiding tournament (see~[{7}]). As gender considerations are not necessary, it is most often the tournament of choice.

Masaaki Harada1
1Department of Mathematics Okayama University Okayama 700 Japan
Abstract:

In this note, we give a method to construct binary self-dual codes using weighing matrices. By this method, we construct extremal self-dual codes obtained from weighing matrices. In particular, the extended Golay code and new extremal singly-even codes of length \(40\) are constructed from certain weighing matrices. We also get necessary conditions for the existence of some weighing matrices.

T.K. Dutta1, B.K. Roy1
1 Indian Statistical Institute 203 Barrackpore Trunk Road Calcutta 700035 India
Abstract:

Symmetric balanced squares for different sizes of array and for different numbers of treatments have been constructed. An algorithm, easily implementable on computers, has been developed for construction of such squares whenever the parameters satisfy the necessary conditions for existence of the square. The method of construction employs \(1\)-factorizations of a complete graph or near \(1\)-factorizations of a complete graph, depending on whether the size of the array is even or odd, respectively. For odd sized squares the method provides a solution directly based on the near \(1\)-factorization. In the case of the squares being of even size, we use Hall’s matching theorem along with a \(1\)-factorization if \([\frac{n^2}{v}]\) is even, otherwise, Hall’s matching theorem together with Fulkerson’s~\([4]\) theorem, on the existence of a feasible flow in a network with bounds on flow leaving the sources and entering the sinks, lead to the required solution.

Alfred J.Menezes1, Yi-Hong Wu1
1Dept. of Discrete and Statistical Sciences 120 Math Annex Auburn University, Auburn, AL 36849
Abstract:

This paper presents a probabilistic polynomial-time reduction of the discrete logarithm problem in the general linear group \(\mathrm{GL}(n, \mathbb{F})\) to the discrete logarithm problem in some small extension fields of \(\mathbb{F}_p\).

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;