Ars Combinatoria
ISSN 0381-7032 (print), 2817-5204 (online)
Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.
Information Menu
- Research article
- Full Text
- Ars Combinatoria
- Volume 047
- Pages: 13-22
- Published: 31/12/1997
A distance two labelling (or coloring) is a vertex labelling with constraints on vertices within distance two, while the regular vertex coloring only has constraints on adjacent vertices (i.e. distance one). In this article, we consider three different types of distance two labellings. For each type, the minimum span, which is the minimum range of colors used, will be explored. Upper and lower bounds are obtained. Graphs that attain those bounds will be demonstrated. The relations among the minimum spans of these three types are studied.
- Research article
- Full Text
- Ars Combinatoria
- Volume 047
- Pages: 3-11
- Published: 31/12/1997
Arcs and linear maximum distance separable \((M.D.S.)\) codes are equivalent objects~\([25]\). Hence, all results on arcs can be expressed in terms of linear M.D.S. codes and conversely. The list of all complete \(k\)-arcs in \(\mathrm{PG}(2,q)\) has been previously determined for \(q \leq 16\). In this paper, (i) all values of \(k\) for which there exists a complete \(k\)-arc in \(\mathrm{PG}(2,q)\), with \(17 \leq q \leq 23\), are determined; (ii) a complete \(k\)-arc for each such possible \(k\) is exhibited.
- Research article
- Full Text
- Ars Combinatoria
- Volume 047
- Pages: 33-48
- Published: 31/12/1997
An \((r,s; m,n)\)-de Bruijn array is a periodic \(r \times s\) binary array in which each of the different \(m \times n\) matrices appears exactly once. C.T. Fan, S.M. Fan, S.L. Ma and M.K. Siu established a method to obtain either an \((r,2^n;m+1,n)\)-array or a \((2r,2^{n-1};m+1,n)\)-array from an \((r,s; m, n)\)-array. A class of square arrays are constructed by their method. In this paper, decoding algorithms for such arrays are described.
- Research article
- Full Text
- Ars Combinatoria
- Volume 045
- Pages: 77-86
- Published: 30/04/1997
- Research article
- Full Text
- Ars Combinatoria
- Volume 046
- Pages: 305-318
- Published: 31/08/1997
An \(H\)-transformation on a simple \(3\)-connected cubic planar graph \(G\) is the dual operation of flip flop on the triangulation \(G^*\) of the plane, where \(G^*\) denotes the dual graph of \(G\). We determine the seven \(3\)-connected cubic planar graphs whose \(H\)-transformations are uniquely determined up to isomorphism.
- Research article
- Full Text
- Ars Combinatoria
- Volume 046
- Pages: 297-303
- Published: 31/08/1997
- Research article
- Full Text
- Ars Combinatoria
- Volume 046
- Pages: 287-296
- Published: 31/08/1997
Conditions are given for decomposing \(K_{m,n}\) into edge-disjoint copies of a bipartite graph \(G\) by translating its vertices in the bipartition of the vertices of \(K_{m,n}\). A construction of the bipartite adjacency matrix of the \(d\)-cube \(Q_d\) is given leading to a convenient \(\alpha\)-valuation and a proof that \(K_{d2^{d-2},d2^{d-1}}\) can be decomposed into copies of \(Q_d\) for \(d > 1\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 046
- Pages: 277-285
- Published: 31/08/1997
Let \(G\) be a connected graph of order \(n\) and let \(k\) be a positive integer with \(kn\) even and \(n \geq 8k^2 + 12k + 6\). We show that if \(\delta(G) \geq k\) and \(\max\{d(u), d(v)\} \geq n/2\) for each pair of vertices \(u,v\) at distance two, then \(G\) has a \(k\)-factor. Thereby a conjecture of Nishimura is answered in the affirmative.
- Research article
- Full Text
- Ars Combinatoria
- Volume 046
- Pages: 251-266
- Published: 31/08/1997
A graph \(G = (V, E)\) is called \(E\)-cordial if it is possible to label the edges with the numbers from the set \(N = \{0,1\}\) and the induced vertex labels \(f(v)\) are computed by \(f(v) = \sum_{\forall u} f(u,v) \pmod{2}\), where \(v \in V\) and \(\{u,v\} \in E\), so that the conditions \( |v_f(0)| – |v_f(1)| \leq 1\) and \(\big| |e_f(0)| – |e_f(1)| \leq 1\) are satisfied, where \(|v_f(i)|\) and \(|e_f(i)|\), \(i = 0,1\), denote the number of vertices and edges labeled with \(0\)’s and \(1\)’s, respectively. The graph \(G\) is called \(E\)-cordial if it admits an \(E\)-cordial labeling. In this paper, we investigate \(E\)-cordiality of several families of graphs, such as complete bipartite graphs, complete graphs, wheels, etc.
- Research article
- Full Text
- Ars Combinatoria
- Volume 046
- Pages: 245-250
- Published: 31/08/1997
Suppose \(G\) and \(G’\) are graphs on the same vertex set \(V\) such that for each \(v \in V\) there is an isomorphism \(\theta_x\) of \(G-v\) to \(G’-v\). We prove in this paper that if there is a vertex \(x \in V\) and an automorphism \(\alpha\) of \(G-x\) such that \(\theta_x\) agrees with \(\alpha\) on all except for at most three vertices of \(V-x\), then \(G\) is isomorphic to \(G’\). As a corollary we prove that if a graph \(G\) has a vertex which is contained in at most three bad pairs, then \(G\) is reconstructible. Here a pair of vertices \(x,y\) of a graph \(G\) is called a bad pair if there exist \(u,v \in V(G)\) such that \(\{u,v\} \neq \{x,y\}\) and \(G-\{x,y\}\) is isomorphic to \(G-\{u,v\}\).