Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Daphne D.-F.Liu1, Roger K.Yeh2
1 Department of Mathematics and Computer Science California State University Los Angeles, USA
2 Department of Applied Mathematics Feng Chia University Taiwan
Abstract:

A distance two labelling (or coloring) is a vertex labelling with constraints on vertices within distance two, while the regular vertex coloring only has constraints on adjacent vertices (i.e. distance one). In this article, we consider three different types of distance two labellings. For each type, the minimum span, which is the minimum range of colors used, will be explored. Upper and lower bounds are obtained. Graphs that attain those bounds will be demonstrated. The relations among the minimum spans of these three types are studied.

G. Faina1, S. Marcugini1, A. Milani1, F. Pambianco1
1 Dipartimento di Matematica Universita, Via Vanvitelli 1, 06123 Perugia, Italy
Abstract:

Arcs and linear maximum distance separable \((M.D.S.)\) codes are equivalent objects~\([25]\). Hence, all results on arcs can be expressed in terms of linear M.D.S. codes and conversely. The list of all complete \(k\)-arcs in \(\mathrm{PG}(2,q)\) has been previously determined for \(q \leq 16\). In this paper, (i) all values of \(k\) for which there exists a complete \(k\)-arc in \(\mathrm{PG}(2,q)\), with \(17 \leq q \leq 23\), are determined; (ii) a complete \(k\)-arc for each such possible \(k\) is exhibited.

W.C. Shiu1
1 Department of Mathematics Hong Kong Baptist: University 224 Waterloo Road Kowloon, Hong Kong
Abstract:

An \((r,s; m,n)\)-de Bruijn array is a periodic \(r \times s\) binary array in which each of the different \(m \times n\) matrices appears exactly once. C.T. Fan, S.M. Fan, S.L. Ma and M.K. Siu established a method to obtain either an \((r,2^n;m+1,n)\)-array or a \((2r,2^{n-1};m+1,n)\)-array from an \((r,s; m, n)\)-array. A class of square arrays are constructed by their method. In this paper, decoding algorithms for such arrays are described.

B.L. Hartnell 1
1Saint Mary’s University Halifax, Nova Scotia Canada B3H 3C3
Kiyoshi Ando1, Hideo Komuro1
1University of Electro-Communications Tokyo, Japan
Abstract:

An \(H\)-transformation on a simple \(3\)-connected cubic planar graph \(G\) is the dual operation of flip flop on the triangulation \(G^*\) of the plane, where \(G^*\) denotes the dual graph of \(G\). We determine the seven \(3\)-connected cubic planar graphs whose \(H\)-transformations are uniquely determined up to isomorphism.

Alfred Geroldinger1, Rudolf Schneider2
1InstiTuT FUR MATHEMATIK, KARL-FRANZENS- UNIVERSITAT, HEINRICHSTRASSE 36, 8010 Graz, AUSTRIA,
2RUDOLF SCHNEIDER, GEBLERGASSE 18/3, 1170 Wien, AusTRIA.
Charles Vanden1
1 Eynden Illinois State University Normal, Illinois
Abstract:

Conditions are given for decomposing \(K_{m,n}\) into edge-disjoint copies of a bipartite graph \(G\) by translating its vertices in the bipartition of the vertices of \(K_{m,n}\). A construction of the bipartite adjacency matrix of the \(d\)-cube \(Q_d\) is given leading to a convenient \(\alpha\)-valuation and a proof that \(K_{d2^{d-2},d2^{d-1}}\) can be decomposed into copies of \(Q_d\) for \(d > 1\).

THOMAS NIESSEN1
1 Institut fiir Statistik, RWTH Aachen 52056 Aachen, Feyderal Republic of Germany
Abstract:

Let \(G\) be a connected graph of order \(n\) and let \(k\) be a positive integer with \(kn\) even and \(n \geq 8k^2 + 12k + 6\). We show that if \(\delta(G) \geq k\) and \(\max\{d(u), d(v)\} \geq n/2\) for each pair of vertices \(u,v\) at distance two, then \(G\) has a \(k\)-factor. Thereby a conjecture of Nishimura is answered in the affirmative.

R. Yilmaz1, I. CAHIT 1
1 Departrnent of Mathematics and Computer Science Eastern Mediterranean University Gazi Magosa – North Cyprus
Abstract:

A graph \(G = (V, E)\) is called \(E\)-cordial if it is possible to label the edges with the numbers from the set \(N = \{0,1\}\) and the induced vertex labels \(f(v)\) are computed by \(f(v) = \sum_{\forall u} f(u,v) \pmod{2}\), where \(v \in V\) and \(\{u,v\} \in E\), so that the conditions \( |v_f(0)| – |v_f(1)| \leq 1\) and \(\big| |e_f(0)| – |e_f(1)| \leq 1\) are satisfied, where \(|v_f(i)|\) and \(|e_f(i)|\), \(i = 0,1\), denote the number of vertices and edges labeled with \(0\)’s and \(1\)’s, respectively. The graph \(G\) is called \(E\)-cordial if it admits an \(E\)-cordial labeling. In this paper, we investigate \(E\)-cordiality of several families of graphs, such as complete bipartite graphs, complete graphs, wheels, etc.

Xuding Zhu1
1Department of Mathematics and Statistics Simon Fraser University Burnaby, BC V5A 186
Abstract:

Suppose \(G\) and \(G’\) are graphs on the same vertex set \(V\) such that for each \(v \in V\) there is an isomorphism \(\theta_x\) of \(G-v\) to \(G’-v\). We prove in this paper that if there is a vertex \(x \in V\) and an automorphism \(\alpha\) of \(G-x\) such that \(\theta_x\) agrees with \(\alpha\) on all except for at most three vertices of \(V-x\), then \(G\) is isomorphic to \(G’\). As a corollary we prove that if a graph \(G\) has a vertex which is contained in at most three bad pairs, then \(G\) is reconstructible. Here a pair of vertices \(x,y\) of a graph \(G\) is called a bad pair if there exist \(u,v \in V(G)\) such that \(\{u,v\} \neq \{x,y\}\) and \(G-\{x,y\}\) is isomorphic to \(G-\{u,v\}\).

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;