
Generally, all the models discussed so far are continuous time models. The continuous time models are quite apt at explaining the phenomena they are trying to predict and have known methods to get information from these type of models. But these models are not accurate for the physical systems which are observed over discreet time periods or which have non-continuous phenomena embedded in them, like production of new generation. Some species like salmon have non-overlapping generation characteristics since they have an annual spawning season and are born each year at a certain time. The discrete models are much more apt in describing the nature’s complex dynamics than the continuous models. A discrete-time modified Leslie-Gower system with double Allee effect is studied in this paper. The stability analysis of interior fixed points is performed. Using center manifold theorem it is shown that the system under consideration exhibits period-doubling and Neimark-Sacker bifurcations. The numerical simulations are provided to illustrate the consistency of the theoretical results.
We investigate the Sombor indices for a diverse group of nonsteroidal anti-inflammatory drugs (NSAIDs) to understand their molecular architecture and physicochemical properties. By utilizing quantitative structure-property relationship (QSPR) modeling, we establish mathematical models linking Sombor indices to key pharmacodynamic and toxicological parameters. Our study sheds light on how the molecular composition of NSAIDs influences their drug profiles and biological behavior, offering valuable insights for drug development and safety assessment.
In this paper, the relations of maximum degree energy and maximum reserve degree energy of a complete graph after removing a vertex have been shown to be proportional to the energy of the complete graph. The results of splitting the graph and shadow graphs are also presented for the complete graph after removing a vertex.
Based on the Hermitian adjacency matrices of second kind introduced by Mohar [1] and weighted adjacency matrices introduced in [2], we define a kind of index weighted Hermitian adjacency matrices of mixed graphs. In this paper we characterize the structure of mixed graphs which are cospectral to their underlying graphs, then we determine a upper bound on the spectral radius of mixed graphs with maximum degree
Modified group divisible designs MGD
We show that connected, bicyclic graphs on nine edges with at least one cycle other than
In the realm of graph theory, recent developments have introduced novel concepts, notably the
Graph theory has experienced notable growth due to its foundational role in applied mathematics and computer science, influencing fields like combinatorial optimization, biochemistry, physics, electrical engineering (particularly in communication networks and coding theory), and operational research (with scheduling applications). This paper focuses on computing topological properties, especially in molecular structures, with a specific emphasis on the nanotube
Let
In this paper, we introduce the concept of the generalized
The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.