Ars Combinatoria
ISSN 0381-7032 (print), 2817-5204 (online)
Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.
Information Menu
- Research article
- Full Text
- Ars Combinatoria
- Volume 036
- Pages: 225-232
- Published: 31/12/1993
Using computer algorithms we found that there exists a unique, up to isomorphism, graph on \(21\) points and \(125\) graphs on \(20\) points for the Ramsey number \(R(K_5 – e, K_5 – e) = 22\). We also construct all graphs on \(n\) points for the Ramsey number \(R(K_4 – e, K_5 – e) = 13\) for all \(n \leq 12\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 036
- Pages: 221-223
- Published: 31/12/1993
Affine \((\mu_1,\ldots,\mu_t)\)-resolvable \((\tau,\lambda)\)-designs are introduced. Constructions of such designs are presented.
- Research article
- Full Text
- Ars Combinatoria
- Volume 036
- Pages: 199-205
- Published: 31/12/1993
Using basis reduction, we settle the existence problem for \(4\)-\((21,5,\lambda)\) designs with \(\lambda \in \{3,5,6,8\}\). These designs each have as an automorphism group the Frobenius group \(G\) of order \(171\) fixing two points. We also show that a \(4\)-\((21,5,1)\) design cannot have the subgroup of order \(57\) of \(G\) as an automorphism group.
- Research article
- Full Text
- Ars Combinatoria
- Volume 036
- Pages: 207-214
- Published: 31/12/1993
A finite group is called \(P_n\)-sequenceable if its nonidentity elements can be listed \(x_1, x_2, \ldots, x_{k}\) such that the product \(x_i x_{i+1} \cdots x_{i+n-1}\) can be rewritten in at least one nontrivial way for all \(i\). It is shown that \(S_n, A_n, D_n\) are \(P_3\)-sequenceable, that every finite simple group is \(P_4\)-sequenceable, and that every finite group is \(P_5\)-sequenceable. It is conjectured that every finite group is \(P_3\)-sequenceable.
- Research article
- Full Text
- Ars Combinatoria
- Volume 036
- Pages: 193-197
- Published: 31/12/1993
- Research article
- Full Text
- Ars Combinatoria
- Volume 036
- Pages: 183-191
- Published: 31/12/1993
In this paper, we give two constructive proofs that all \(4\)-stars are Skolem-graceful. A \(4\)-star is a graph with 4 components, with at most one vertex of degree exceeding 1 per component. A graph \(G = (V, E)\) is Skolem-graceful if its vertices can be labelled \(1, 2, \ldots, |V|\) so that the edges are labelled \(1, 2, \ldots, |E|\), where each edge-label is the absolute difference of the labels of the two end-vertices. Skolem-gracefulness is related to the classic concept of gracefulness, and the methods we develop here may be useful there.
- Research article
- Full Text
- Ars Combinatoria
- Volume 036
- Pages: 171-182
- Published: 31/12/1993
We consider two seemingly related problems. The first concerns pairs of graphs \(G\) and \(H\) containing endvertices (vertices of degree \(1\)) and having the property that, although they are not isomorphic, they have the same collection of endvertex-deleted subgraphs.
The second question concerns graphs \(G\) containing endvertices and having the property that, although no two endvertices are similar, any two endvertex-deleted subgraphs of \(G\) are isomorphic.
- Research article
- Full Text
- Ars Combinatoria
- Volume 036
- Pages: 161-169
- Published: 31/12/1993
A graph \(G\) is supereulerian if it contains a spanning eulerian subgraph. Let \(n\), \(m\), and \(p\) be natural numbers, \(m, p \geq 2\). Let \(G\) be a \(2\)-edge-connected simple graph on \(n > p + 6\) vertices containing no \(K_{m+1}\). We prove that if
\[|E(G)\leq \binom{n-p+1-k}{2}+(m-1)\binom{k+1}{2}+2p-4, \quad (1)]\
where \(k = \lfloor\frac{n-p+1}{m}\rfloor\), then either \(G\) is supereulerian, or \(G\) can be contracted to a non-supereulerian graph of order less than \(p\), or equality holds in (1) and \(G\) can be contracted to \(K_{2,p-2}\) (p is odd) by contracting a complete \(m\)-partite graph \(T_{m,n-p+1}\) of order \(n – p + 1\) in \(G\). This is a generalization of the previous results in [3] and [5].
- Research article
- Full Text
- Ars Combinatoria
- Volume 036
- Pages: 157-160
- Published: 31/12/1993
Steiner triple systems admitting automorphisms whose disjoint cyclic decomposition consist of two cycles are explored. We call such systems bicyclic . Several necessary conditions are given. Sufficient conditions are given when the length of the smaller cycle is \(7\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 036
- Pages: 147-155
- Published: 31/12/1993
The \(\Delta\)-subgraph \(G_\Delta \) of a simple graph \(G\) is the subgraph induced by the vertices of maximum degree of \(G\). In this paper, we obtain some results about the construction of a graph \(G\) if the graph \(G\) is Class 2 and the structure of \(G_\Delta \) is particularly simple.