Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Stanisfaw P.Radziszowski1
1 Department of Computer Science Rochester Institute of Technology Rochester, New York 14623
Abstract:

Using computer algorithms we found that there exists a unique, up to isomorphism, graph on \(21\) points and \(125\) graphs on \(20\) points for the Ramsey number \(R(K_5 – e, K_5 – e) = 22\). We also construct all graphs on \(n\) points for the Ramsey number \(R(K_4 – e, K_5 – e) = 13\) for all \(n \leq 12\).

Sanpei Kageyama1, D.V.S. Sastry2
1Department of Mathematics Hiroshima University Shinonome, Hiroshima 734, Japan
2Bombay 400025, India
Abstract:

Affine \((\mu_1,\ldots,\mu_t)\)-resolvable \((\tau,\lambda)\)-designs are introduced. Constructions of such designs are presented.

Yeow Meng Chee1, Donald L.Kreher2
1Information Technology Institute National Computer Board 71 Science Park Drive, $0511 Republic of Singapore
2Department of Mathematical Sciences Michigan Technological University Houghton, Michigan 49931-1295 U.S.A.
Abstract:

Using basis reduction, we settle the existence problem for \(4\)-\((21,5,\lambda)\) designs with \(\lambda \in \{3,5,6,8\}\). These designs each have as an automorphism group the Frobenius group \(G\) of order \(171\) fixing two points. We also show that a \(4\)-\((21,5,1)\) design cannot have the subgroup of order \(57\) of \(G\) as an automorphism group.

Jeanne Nielsen1
1 Department of Mathematics Duke University Durham, N.C. U.S.A. 27706
Abstract:

A finite group is called \(P_n\)-sequenceable if its nonidentity elements can be listed \(x_1, x_2, \ldots, x_{k}\) such that the product \(x_i x_{i+1} \cdots x_{i+n-1}\) can be rewritten in at least one nontrivial way for all \(i\). It is shown that \(S_n, A_n, D_n\) are \(P_3\)-sequenceable, that every finite simple group is \(P_4\)-sequenceable, and that every finite group is \(P_5\)-sequenceable. It is conjectured that every finite group is \(P_3\)-sequenceable.

A.O. Philips1
1 Department of Mathematics and Statistics Birkbeck College Malet Street London WCIE 7HX England
Graham Denham1, Ming-Guang Leu2, Andy Liu3
1Department of Mathematics The University of Alberta Edmonton, T6G 2G1 Canada
2Department of Mathematics National Central University Chung-Li, Taiwan 32054
3 Department of Mathematics The University of Alberta Edmonton, T6G 2G1 Canada
Abstract:

In this paper, we give two constructive proofs that all \(4\)-stars are Skolem-graceful. A \(4\)-star is a graph with 4 components, with at most one vertex of degree exceeding 1 per component. A graph \(G = (V, E)\) is Skolem-graceful if its vertices can be labelled \(1, 2, \ldots, |V|\) so that the edges are labelled \(1, 2, \ldots, |E|\), where each edge-label is the absolute difference of the labels of the two end-vertices. Skolem-gracefulness is related to the classic concept of gracefulness, and the methods we develop here may be useful there.

Josef Lauri1
1 (University of Malta)
Abstract:

We consider two seemingly related problems. The first concerns pairs of graphs \(G\) and \(H\) containing endvertices (vertices of degree \(1\)) and having the property that, although they are not isomorphic, they have the same collection of endvertex-deleted subgraphs.

The second question concerns graphs \(G\) containing endvertices and having the property that, although no two endvertices are similar, any two endvertex-deleted subgraphs of \(G\) are isomorphic.

Zhi-Hong Chen1
1Department of Mathematics Wayne State University Detroit, MI 48202
Abstract:

A graph \(G\) is supereulerian if it contains a spanning eulerian subgraph. Let \(n\), \(m\), and \(p\) be natural numbers, \(m, p \geq 2\). Let \(G\) be a \(2\)-edge-connected simple graph on \(n > p + 6\) vertices containing no \(K_{m+1}\). We prove that if

\[|E(G)\leq \binom{n-p+1-k}{2}+(m-1)\binom{k+1}{2}+2p-4, \quad (1)]\

where \(k = \lfloor\frac{n-p+1}{m}\rfloor\), then either \(G\) is supereulerian, or \(G\) can be contracted to a non-supereulerian graph of order less than \(p\), or equality holds in (1) and \(G\) can be contracted to \(K_{2,p-2}\) (p is odd) by contracting a complete \(m\)-partite graph \(T_{m,n-p+1}\) of order \(n – p + 1\) in \(G\). This is a generalization of the previous results in [3] and [5].

Robert B.Gardner1
1 Department of Mathematics Louisiana State University in Shreveport Shreveport, Louisiana ULS.A. 7115
Abstract:

Steiner triple systems admitting automorphisms whose disjoint cyclic decomposition consist of two cycles are explored. We call such systems bicyclic . Several necessary conditions are given. Sufficient conditions are given when the length of the smaller cycle is \(7\).

A.J. W.Hilton1, Cheng Zhao1
1 Department of Mathematics West Virginia Univerity Morgantown,WV 26506 U.S.A.
Abstract:

The \(\Delta\)-subgraph \(G_\Delta \) of a simple graph \(G\) is the subgraph induced by the vertices of maximum degree of \(G\). In this paper, we obtain some results about the construction of a graph \(G\) if the graph \(G\) is Class 2 and the structure of \(G_\Delta \) is particularly simple.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;