Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Gerhard Grams1, Thomas Meixner1
1Mathematisches Institut Arndtstr. 2 W-6300 Giessen Germany
M. Hofmeister1
1Siemens AG, Munich Corporate Research & Development
Abstract:

The automorphism group of a graph acts on its cocycle space over any field. The orbits of this group action will be counted in case of finite fields. In particular, we obtain an enumeration of non-equivalent edge cuts of the graph.

Rebecca Calahan1
1Department of Mathematics and Statistics Middle Tennessee State University Murfreesboro, TN 37130
Abstract:

We give necessary and sufficient conditions on the order of a Steiner triple system admitting an automorphism \(\pi\), consisting of \(1\) large cycle, several cycles of length \(4\) and a fixed point.

Michel Moliard1, Charles Payan1
1 LSD (IMAG) BP 53X 38041 Grenoble CEDEX France
Abstract:

A graph \(G = (V, E)\) is said to be elegant if it is possible to label its vertices by an injective mapping \(g\) into \(\{0, 1, \dots, |E|\}\) such that the induced labeling \(h\) on the edges defined for edge \(x, y\) by \(h(x, y) = g(x) + g(y) \mod (|E| + 1)\) takes all the values in \(\{1, \dots, |E|\}\). In the first part of this paper, we prove the existence of a coloring of \(K_n\) with a omnicolored path on \(n\) vertices as subgraph, which had been conjectured by Hastman [2].
In the second part we prove that the cycle on \(n\) vertices is elegant if and only if \(n \neq 1 \pmod{4}\) and we give a new construction of an elegant labeling of the path \(P_n\), where \(n \neq 4\).

W. Ananchuen1, L. Caccetta1
1 School of Mathematics and Statistics Curtin University of Technology GPO Box U1987 Perth 6001 Western Australia
Abstract:

A round robin tournament on \(q\) players in which draws are not permitted is said to have property \(P(n, k)\) if each player in any subset of \(n\) players is defeated by at least \(k\) other players. We consider the problem of determining the minimum value \(F(n, k)\) such that every tournament of order \(q \geq F(n, k)\) has property \(P(n, k)\). The case \(k = 1\) has been studied by Erdős, G. and E. Szekeres, Graham and Spencer, and Bollobás. In this paper we present a lower bound on \(F(n, k)\) for the case of Paley tournaments.

Abstract:

Upper and lower bounds are established for the toughness of the generalized Petersen graphs \(G(n,2)\) for \(n \geq 5\), and all non-isomorphic disconnecting sets that achieve the toughness are presented for \(5 \leq n \leq 15\). These results also provide an infinite class of \(G(n,2)\) for which the toughness equals \(\frac{5}{4}\), namely when \(n \equiv 0 (\mod 7)\).

Laurence Ghier1
1Département de Mathématiques et Informatique Université du Maine 72017 Le Mans Cédex France
Abstract:

Let \(m\) be a double occurrence word (i.e., each letter occurring in \(m\) occurs precisely twice). An alternance of \(m\) is a non-ordered pair \(uw\) of distinct letters such that we meet alternatively \(\dots v \dots w \dots v \dots w \dots\) when reading \(m\). The alternance graph \(A(m)\) is the simple graph whose vertices are the letters of \(m\) and whose edges are the alternances of \(m\). We define a transformation of double occurrence words such that whenever \(A(m) = A(n)\), \(m\) and \(n\) are related by a sequence of these transformations.

M.N. Ellingham1
1Department of Mathematics Vanderbilt University Nashville, TN 37240, U. S. A.
Abstract:

A graph \(G\) is a sum graph if there is a labeling \(o\) of its vertices with distinct positive integers, so that for any two distinct vertices \(u\) and \(v\), \(uv\) is an edge of \(G\) if and only if \(\sigma(u) +\sigma(v) = \sigma(w)\) for some other vertex \(w\). Every sum graph has at least one isolated vertex (the vertex with the largest label). Harary has conjectured that any tree can be made into a sum graph with the addition of a single isolated vertex. We prove this conjecture.

Miri Priesler1, Michael Tarsi 1
1Computer Science Department School of Mathematical Sciences Tel-Aviv university 69978 Israel
Abstract:

An \(H\)-decomposition of a graph \(G\) is a representation of \(G\) as an edge disjoint union of subgraphs, all of which are isomorphic to another graph \(H\). We study the case where \(H\) is \(P_3 \cup tK_2\) – the vertex disjoint union of a simple path of length 2 (edges) and \(t\) isolated edges – and prove that a set of three obviously necessary conditions for \(G = (V, E)\) to admit an \(H\)-decomposition, is also sufficient if \(|E|\) exceeds a certain function of \(t\). A polynomial time algorithm to test \(H\)-decomposability of an input graph \(G\) immediately follows.

R. Wei 1
1Department of Mathematics Suzhou University Suzhou 215006 P.R. China
Abstract:

In this paper we consider group divisible designs with equal-sized holes \((HGDD)\) which is a generalization of modified group divisible designs \([1]\) and \(HMOLS\). We prove that the obvious necessary conditions for the existence of the \(HGDD\) is sufficient when the block size is three, which generalizes the result of Assaf[1].

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;