Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Walter W. Kirchherr1
1 San Jose State University San Jose, CA 95192
Abstract:

Three types of graphs are investigated with respect to cordiality, namely:graphs which are the complete product of two cordial graphs, graphs which are the subdivision graphs of cordial graphs, cactus graphs.
We give sufficient conditions for the cordiality of graphs of the first two types and show that a cactus graph is cordial if and only if the cardinality of its edge set is not congruent to \(2\) (mod 4).

HLL. Abbott1, DR. Hare2
1 Department of Mathematics University of Alberta Edmonton, Alberta Canada T6G 2G1
2Department of Mathematics and Statistics Simon Fraser University Burnaby, B.C. Canada V5A 156
Abstract:

It is shown that there exists a 4-critical 3-uniform linear hypergraph of order \(m\) for every \(m \geq 56\).

RALPH FAUDREE1
1Memphis State University
Abstract:

Essentially all pairs of forests \((F_1,F_2)\) are determined for which \(R(F_1,F_2)\) is finite, where \(R(F_1,F_2)\) is the class of minimal Ramsey graphs for the pair \((F_1,F_2)\).

Elisabetta Manduchi1
1 Dipartimento di Matematica? Universita di Roma “La Sapienza” 1-00185 Roma, Italia
Abstract:

Steiner Heptagon Systems (SHS) of type 1, 2, and 3 are defined and the spectrum of type 2 SHSs (SHS2) is studied. It is shown that the condition \(n \equiv 1 \) { or } \(7 \pmod{14}\) is not only necessary but also sufficient for the existence of an SHS2 of order \(n\), with the possible exceptions of \(n=21\) and \(85\). This gives an interesting algebraic result since the study of SHS2s is equivalent to the study of quasigroups satisfying the identities \(x^2 = x\), \((yx)x = y\), and \((xy)(y(xy)) = (yx)(x(yx))\).

F. Franek1, R. Mathon2, A. Rosa3
1 Department of Computer Science and Systems, McMaster University, Hamilton, Ontario L8S 4K1
2Department of Computer Science University of Toronto Toronto, Ontario MSS 1A4
3Department of Mathematics and Statistics McMaster University Hamilton, Ontario L8S 4K1
James Currie 1, Richard Nowakowski2
1Department of Mathematics, University of Winnipeg Winnipeg, Manitoba, Canada
2 Department of Mathematics, Computer Science and Statistics Dalhousie University, Halifax, Nova Scotia, Canada
Abstract:

A graph is called well-covered if every maximal independent set has the same size. One generalization of independent sets in graphs is that of a fractional cover – attach nonnegative weights to the vertices and require that for every vertex the sum of all the weights in its closed neighbourhood be at least 1. In this paper, we consider and characterize fractionally well-covered graphs.

Stanislaw P, Radziszowski1, Donald L. Kreher 1
1 Department of Computer Science Rochester Institute of Technology Rochester, NY 14623
Abstract:

We prove that \(e(3,k+1,n) \geq 6n-13k\), where \(e(3,k+1,n)\) is the minimum number of edges in any triangle-free graph on \(n\) vertices with no independent set of size \(k+1\). To achieve this, we first characterize all such graphs with exactly \(e(3,k+1,n)\) edges for \(n \leq 3k\). These results yield some sharp lower bounds for the independence ratio for triangle-free graphs. In particular, the exact value of the minimal independence ratio for graphs with average degree \(4\) is shown to be \(\frac{4}{13}\). A slight improvement to the general upper bound for the classical Ramsey \(R(3,k)\) numbers is also obtained.

DR. Stinson 1, L. Zhu1
1 University of Manitoba and Suzhou University
Abstract:

In this paper, we prove that for any \(n > 27363\), \(n \equiv 3\) modulo {6}, there exist a pair of orthogonal Steiner triple systems of order \(n\). Further, a pair of orthogonal Steiner triple systems of order \(n\) exist for all \(n \equiv 3\) modulo {6}, {3} \(< n \leq 27363\), with at most \(918\) possible exceptions. The proof of this result depends mainly on the construction of pairwise balanced designs having block sizes that are prime powers congruent to \(1\) modulo {6}, or \(15\) or \(27\). Some new examples are also constructed recursively by using conjugate orthogonal quasigroups.

Karen L. Collins1, Mark Hovey 2
1 Dept. of Mathematics Wesleyan University Middletown, CT 06457
2Dept. of Mathematics MIT Cambridge, MA 02139
Abstract:

We give a bijective proof for the identity \(S(n,k) \equiv \binom{n-j-1}{n-k} \pmod{2}\)
where \(j = \lfloor \frac{k}{2} \rfloor\) is the largest integer \(\leq\frac{k}{2}\) .

Joseph L. Yucas 1
1 Southern Illinois University Carbondale, Illinois 62901-4408 U.S.A

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;