Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Pramod K. Das1
1 Department of Mathematics and Statistics McMaster University Hamilton, CANADA
Abstract:

The concept of self-complementary (s.c.) graphs is extended to almost self-complementary graphs. We define an \(n\)-vertex graph to be almost self-complementary (a.s.c.) if it is isomorphic to its complement with respect to \(K_n – e\), the complete graph with one edge removed. A.s.c. graphs with \(n\) vertices exist if and only if \(n \equiv 2\) or \(3 \pmod{4}\), i.e., precisely when s.c. graphs do not exist. We investigate various properties of a.s.c. graphs.

Bojan Mohar1
1 Department of Mathematics University of Ljubljana Jadranska 19, 61111 Ljubljana Yugoslavia
Abstract:

A triangulation of a surface is \(\delta\)-regular if each vertex is contained in exactly \(\delta\) edges. For each \(\delta \geq 7\), \(\delta\)-regular triangulations of arbitrary non-compact surfaces of finite genus are constructed. It is also shown that for \(\delta \leq 6\) there is a \(\delta\)-regular triangulation of a non-compact surface \(\sum\) if and only if \(\delta = 6\) and \(\sum\) is homeomorphic to one of the following surfaces: the Euclidean plane, the two-way-infinite cylinder, or the open Möbius band.

B. Gardner1
1 Memorial University of Newfoundland
Abstract:

The packing number \(D(2,k,v)\) is defined to be the maximum cardinality of a family of \(k\)-subsets, chosen from a set of \(v\) elements, such that no pair of elements appears in more than one \(k\)-subset. We examine \(D(2,k,v)\) for \(v < k(k-1)\) and determine such numbers for the case \(k=5\), \(v < 20\).

Eric Seah1
1 Dept. of Actuarial and Management Sciences University of Manitoba Winnipeg, Manitoba Canada R3T 2N2
Abstract:

Ho and Shee [5] showed that for a graph \(G\) of order \(n\) \((\geq4)\) and size \(m\) to be cordial, it is necessary that \(m\) must be less than \(\frac{n(n-1)}{2} – \left\lceil\frac{n}{2}\right\rceil + 2\).

In this paper, we prove that there exists a cordial graph of order \(n\) and size \(m\), where
\(n-1\leq m\leq\frac{n(n-1)}{2} – \left\lceil\frac{n}{2}\right\rceil + 1.\)

R. J. Faudree1, C. C. Rousseau1, J. Sheehan2
1Memphis State University
2 University of Aberdeen
Abstract:

Let \(B_n = K(1,1,n)\) denote the \(n\)-book. In this paper we (i) calculate \(\lambda(C_5, B_n)\) for all \(n\),
(ii) prove that if \(m\) is an odd integer \(\geq 7\) and \(n \geq 4m – 13\) then \(r(C_m, B_n) = 2n + 3\),and (iii)
prove that if \(m \geq 2n + 2\) then \(r(C_m, B_n) = 2m – 1\).

Sanpei Kageyama1
1 Department of Mathematics Hiroshima University Shinonome, Hiroshima 734 Japan
Joe Hemmeter1, Andrew Woldar2
1Department of Mathematical Sciences University of Delaware Newark, Delaware 19716
2Department of Mathematical Sciences Villanova University Villanova, Pennsylvaina 19085
Abstract:

The notion of fusion in association schemes is developed and then applied to group schemes. It is shown that the association schemes derived in [1] and [4] are special cases of \(A\)-fused schemes of group schemes \(X(G)\), where \(G\) is abelian and \(A\) is a group of automorphisms of \(G\). It is then shown that these latter schemes give rise to PBIB designs under constructions identical to those found in [1] and [4].

M. El-Zahar1, C. M. Pareek1
1Mathematics Department, Kuwait University P.O. Box 5969, Safat, Kuwait
Abstract:

Let \(G = (X, E)\) be any graph. Then \(D \subset X\) is called a dominating set of \(G\) if for every vertex \(x \in X – D\), \(x\) is adjacent to at least one vertex of \(D\). The domination number, \(\gamma(G)\), is \(\min \{|D| \mid D\) { is a dominating set of } \(G\}\). In 1965 Vizing gave the following conjecture: For any two graphs \(G\) and \(H\)

\[\gamma(G \times H) \geq \gamma(G) . \gamma(H).\]

In this paper, it is proved that \(\gamma(G \times H) > \gamma(G) . \gamma(H)\) if \(H\) is either one of the following graphs: (a) \(H = G^-\), i.e., complementary graph of \(G\), (b) \(H = C_m\), i.e., a cycle of length \(m\) or (c) \(\gamma(H) \leq 2\).

Song Zeng-min1, Zhang Ke-min2
1 (Department of Mathematics Southeast University Nanjing, 210018, People’s Republic of China)
2 (Department of Mathematics, Nanjing University, Nanjing, 210008, People’s Republic of China)
Abstract:

In [1],[2], there are many assignment models. This paper gives a new assignment model and an algorithm for solving this problem.

FE. Bennett1, Chen Maorong2
1 Department of Mathematics Mount Saint Vincent University Halifax, Nova Scotia B3M 236 Canada
2Department of Mathematics Suzhou University, Suzhou People’s Republic of China
Abstract:

Let \(v, k\), and \(n\) be positive integers. An incomplete perfect Mendelsohn design, denoted by \(k\)-IMPD\((v, n)\), is a triple \((X, Y, B)\) where \(S\) is a \(v\)-set (of points), \(Y\) is an \(n\)-subset of \(X\), and \(B\) is a collection of cyclically ordered \(k\)-subsets of \(X\) (called blocks) such that every ordered pair \((a, b) \in (X \times X) \setminus (Y \times Y)\) appears \(t\)-apart in exactly one block of \(B\) and no ordered pair \((a, b) \in Y \times Y\) appears in any block of \(B\) for any \(t\), where \(1 \leq t \leq k – 1\). In this paper, some basic necessary conditions for the existence of a \(k\)-IMPD\((v, n)\) are easily obtained, namely,
\((v – n)(v – (k – 1)n – 1) \equiv 0 \pmod{k} \quad {and} \quad v > (k – 1)n + 1.\) It is shown that these basic necessary conditions are also sufficient for the case \(k = 3\), with the one exception of \(v = 6\) and \(n = 1\). Some problems relating to embeddings of perfect Mendelsohn designs and associated quasigroups are mentioned.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;