Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

R. Ewen1, M. Hofmeister2
1 Cologne
2Cologne
Abstract:

We present a permutation group whose orbits classify isomorphism of covering projections of the complete graph with \(4\) vertices. Two structure theorems concerning this group are proved.

Geoffrey Exoo1
1Department of Mathematics and Computer Science Indiana State University Terre Haute, IN 47809
Abstract:

Constructions have been completed which improve the lower bounds for \(R(4,6)\), \(R(5,6)\) and \(R(3,12)\).

Y.H. Peng1, C.C. Chen2, K.M. Koh2
1Department of Mathematics Untversiti Pertanian Malaysia 48400 Serdang, Malaysia
2Department of Mathematics — National University of Singapore Kent Ridge, Singapore 05-11
Abstract:

Let \(G\) be a graph with minimum degree \(\delta\). For each \(i = 1, 2, \ldots, \delta \), let \(a_i(G)\) (resp. \(\alpha^*_i(G)\)) denote the smallest integer \(k\) such that \(G\) has an \([i, k]\)-factor (resp. a connected \([i, k]\)-factor). Denote by \(G_n\) a complete \(n\)-partite graph. In this paper, we determine the value of \(\alpha_t(G_n)\), and show that \(0 \leq \alpha^*_1(G_n) – \alpha(G_n) \leq 1\) and \(\alpha^*_i(G_n) = a_i(G_n)\) for each \(i = 2, 3, \ldots, \delta\).

Biagio Micale1, Mario Pennisi1
1 Dipartimento di Matematica Universita di Catania Viale A. Doria 5 95125 Catania Italy
Abstract:

An oriented (or ordered) triple means either a Mendelsohn or a transitive triple. An oriented (or ordered) triple system of order \(v\), briefly OTS(\(v\)), is a pair \((V, B)\), where \(V\) is a \(v\)-set and \(B\) is a collection of oriented triples of elements of \(V\), such that every ordered pair of distinct elements of \(V\) belongs to exactly one member of \(B\). It is known that an OTS(\(v\)) exists if and only if \(v \equiv 0, 1 \pmod{3}\). An OTS(\(v\)) is cyclic if it admits an automorphism consisting of a single cycle of length \(v\); an OTS(\(v\)) is rotational if it admits an automorphism consisting of a single fixed point and one cycle of length \(v-1\). In this note we give some constructions of OTS(\(v\))’s which allow to determine the spectrum of cyclic and of rotational OTS(\(v\))’s.

Y. Roditty1
1School of Mathematical Sciences Tel-Aviv University Tel-Aviv Israel
Abstract:

It is shown that the maximal number of pairwise edge disjoint trees of order seven in the complete graph \(K_n\), and the minimum number of trees of order seven, whose union is \(K_n\), are \(\left\lfloor\frac{n(n-1)}{12}\right\rfloor\) and \(\left\lceil\frac{n(n-1)}{12}\right\rceil,n\geq 11\), respectively. (\(\lfloor x\rfloor\) denotes the largest integer not exceeding \(x\) and \(\lceil x\rceil\) the least integer not less than \(x\)).

Noboru Hamada1, Tor Helleseth2, Oyvind Ytrehus2
1Department of Applied Mathematics, Osaka Women’s University, Sakai, Osaka, Japan 590.
2Department of Infor- matics, University of Bergen, Thormghlensgt. 55, N-S008 Bergen, Norway.
Abstract:

It is unknown whether or not there exists a \([51, 5, 33; 3]\)-code (meeting the Griesmer bound). The purpose of this paper is to show that there is no \([51, 5, 33; 3]\)-code.

Dionysios Kountanis1, Jiuqiang Liu1, Kenneth Williams1
1Western Michigan University Kalamazoo, Michigan 49008
Abstract:

The Hitting Set problem is investigated in relation to restrictions imposed on the cardinality of subsets and the frequency of element occurences in the subsets. It is shown that the Hitting Set subproblem where each subset has cardinality \(C\) for fixed \(C \geq 2\) and the frequency of each element is exactly \(f\) for fixed \(f \geq 3\) remains NP-complete, but the problem becomes polynomial when \(f \leq 2\). The restriction of the Vertex Cover problem to \(f\)-regular graphs for \(f \geq 3\) remains NP-complete.

Noboru Hamada1, Tor Helleseth2, Oyvind Ytrehus2
1Department of Applied Mathematics, Osaka Women’s University, Sakai, Osaka, Japan 590
2Department of Infor- matics, University of Bergen, Thormghlensgt. 55, N-5008 Bergen, Norway.
Abstract:

Hill and Newton showed that there exists a \([20, 6, 12; 3]\)-code, and that the weight distribution of a \([20,5, 12; 3]\)-code is unique. However, it is unknown whether or not a code with these parameters is unique. Recently, Hamada and Helleseth showed that a \([19, 4, 12; 3]\)-code is unique up to equivalence, and characterized this code using a characterization of \(\{21, 6; 3, 3\}\)-minihypers. The purpose of this paper is to show, using the geometrical structure of the \([19, 4, 12; 3]\)-code, that exactly two non-isomorphic \([20, 5, 12; 3]\)-codes exist.

Bhaskar Bagchi1
1 Theoretical Statistics and Mathematics Division indian Statistical Institute Calcutta 700 035 INDIA
Abstract:

We obtain a new characterization, by a configuration theorem, of the Miquelian geometries among the finite inversive (= Möbius) planes of even order. The main tool used is a characterization due to J. Tits of elliptic ovoids in three-dimensional projective space,

Yang Yuansheng1
1Dalian University of Technology People’s Republic of China
Abstract:

Let \(E_n\) denote the minimum number of edges in a graph that contains every tree with \(n\) edges. This article provides two sets of data concerning \((n+1)\)-vertex graphs with \(E_n\) edges for each \(n \leq 11\): first, a minimum set of trees with \(n\) edges such that all trees with \(n\) edges are contained in such a graph whenever it contains the trees in the minimum set; second, all mutually nonisomorphic graphs that contain all trees with \(n\) edges.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;