Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Ahmad Mahmood Qureshi1
1Abdus Salam School of Mathematical Sciences GC University Lahore, Pakistan
Abstract:

The \(Problème \;des \;Ménages\) \((Married \;Couples \;Problem)\), introduced by E. Lucas in 1891, is a classical problem that asks for the number of ways to arrange \(n\) couples around a circular table, such that husbands and wives are in alternate places and no couple is seated together. In this paper, we present a new version of the Menage Problem that carries constraints consistent with Muslim culture.

Shengxiang Lv1, Yanpei Liu2
1Department of Mathematics, Hunan University of Science and Technology, Hunan Xiangtan 411201, China
2Department of Mathematics, BeiJing Jiaotong University, Beijing 100044, China
Abstract:

Let \(G\) be a connected simple graph with girth \(g\) and minimal degree \(\delta \geq 3\). If \(G\) is not up-embeddable, then, when \(G\) is 1-edge connected,

\[\gamma_M(G) \geq \frac{D_1(\delta,g)-2}{2D_1(\delta,g)-1}\beta(G)+ \frac{D_1(\delta,g)+1}{2D_1(\delta,g)-1}.\]

When \(G\) is \(k\)(\(k = 2, 3\))-edge connected ,

\[\gamma_M(G) \geq \frac{D_k(\delta,g)-1}{2D_k(\delta,g)}\beta(G)+ \frac{D_k(\delta,g)+1}{2D_k(\delta,g)}.\]

The functions \(D_k(\delta, g)\) (\(k = 1, 2, 3\)) are increasing functions on \(\delta\) and \(g\).

Jin-Hua Yang1, Feng-Zhen Zhao1
1Dalian University of Technology, Dalian 116024, China
Abstract:

In this paper, the authors discuss the values of a class of generalized Euler numbers and generalized Bernoulli numbers at rational points.

A.P. Santhakumaran1, S. Athisayanathan1
1P. G. and Research Department of Mathematics St. Xavier’s College (Autonomous) Palayamkottai – 627 002, India.
Abstract:

For two vertices \(u\) and \(v\) in a graph \(G = (V,E)\), the detour distance \(D(u,v)\) is the length of a longest \(u-v\) path in \(G\). A \(u-v\) path of length \(D(u,v)\) is called a \(u-v\) detour. A set \(S \subseteq V\) is called a weak edge detour set if every edge in \(G\) has both its ends in \(S\) or it lies on a detour joining a pair of vertices of \(S\). The weak edge detour number \(dn_w(G)\) of \(G\) is the minimum order of its weak edge detour sets and any weak edge detour set of order \(dn_w(G)\) is a weak edge detour basis of \(G\). Certain general properties of these concepts are studied. The weak edge detour numbers of certain classes of graphs are determined. Its relationship with the detour diameter is discussed and it is proved that for each triple \(D, k, p\) of integers with \(8 \leq k \leq p-D+1\) and \(D \geq 3\) there is a connected graph \(G\) of order \(p\) with detour diameter \(D\) and \(dn_w(G) = k\). It is also proved that for any three positive integers \(a, b, k\) with \(k \geq 3\) and \(a \leq b \leq 2a\), there is a connected graph \(G\) with detour radius \(a\), detour diameter \(b\) and \(dn_w(G) = k\). Graphs \(G\) with detour diameter \(D \leq 4\) are characterized for \(dn_w(G) = p-1\) and \(dn_w^+(G) = p-2\) and trees with these numbers are characterized. A weak edge detour set \(S\), no proper subset of which is a weak edge detour set, is a minimal weak edge detour set. The upper weak edge detour number \(dn_w^+(G)\) of a graph \(G\) is the maximum cardinality of a minimal weak edge detour set of \(G\). It is shown that for every pair \(a, b\) of integers with \(2 \leq a \leq b\), there is a connected graph \(G\) with \(dn_w(G) = a\) and \(dn_w^+(G) = b\).

Shuhua Li1, Hong Bian1, Guoping Wang1, Haizheng Yu1
1School of Mathematical Sciences, Xinjiang Normal University, Urumai, Xinjiang 830054, P.R.China
Abstract:

The vertex Padmakar-Ivan \((PI_v)\) index of a graph \(G\) is defined as the summation of the sums of \([m_{eu}(e|G) + m_{eu}(e|G)]\) over all edges \(e = uv\) of a connected graph \(G\), where \(m_{eu}(e|G)\) is the number of vertices of \(G\) lying closer to \(u\) than to \(v\), and \(m_{eu}(e|G)\) is the number of vertices of \(G\) lying closer to \(v\) than to \(u\). In this paper, we give the explicit expressions of the vertex PI indices of some sums of graphs.

Yuqin Zhang1, Liandi Zhang1
1Department of Mathematics Tianjin University, 300072, Tianjin, China
Abstract:

A graph \(G\) is called \(H\)-equicoverable if every minimal \(H\)-covering in \(G\) is also a minimum \(H\)-covering in \(G\). In this paper, we give the characterization of connected \(M_2\)-equicoverable graphs with circumference at most \(5\).

Luozhong Gong1, Weijun Liu2
1School of Mathematics and Computing, Hunan University of Science and Engineering, Yongzhou, Hunan, 425100, P. R. China
2School of science, Nantong University, Nantong, Jiangsu, 226007, P. R. China
Abstract:

In this paper, we investigate the existence of \(2\)-\((v,8,1)\) designs admitting a block-transitive automorphism group \(G \leq \mathrm{ATL}(1,q)\). Using Weil’s theorem on character sums, the following theorem is proved:If a prime power \(q\) is large enough and \(q \equiv 57 \pmod{112}\), then there is always a \(2-(v,8,1)\) design which has a block-transitive, but non flag-transitive automorphism group \(G.\)

Shih-Yan Chen1, Hsin-Ju Wang2
1Department of Applied Mathematics, Chung Yuan Christian University, Taiwan.
2Department of Mathematics, National Chung Cheng University, Taiwan.
Abstract:

In this paper, we show that the independence polynomial \(I(G^*; x)\) of \(G^*\) is unimodal for any graph \(G^*\) whose skeleton \(G\) has stability number \(\alpha(G) \leq 8\). In addition, we show that the independence polynomial of \(K^*_{2,n}\) is log-concave with a unique mode.

Xinmin Hou1
1Department of Mathematics University of Science and Technology of China Hefei, Anhui, 230026, China
Abstract:

Let \(G = (V,E)\) be a graph. A set \(S \subseteq V\) is a dominating set of \(G\) if every vertex not in \(S\) is adjacent to some vertex in \(S\). The domination number of \(G\), denoted by \(\gamma(G)\), is the minimum cardinality of a dominating set of \(G\). A set \(S \subseteq V\) is a total dominating set of \(G\) if every vertex of \(V\) is adjacent to some vertex in \(S\). The total domination number of \(G\), denoted by \(\gamma_t(G)\), is the minimum cardinality of a total dominating set of \(G\). In this paper, we provide a constructive characterization of those trees with equal domination and total domination numbers.

Jian-Hua Yin1, Jiong-Sheng Li2
1Department of Mathematics, College of Information Science and Technology, Hainan University, Haikou, Hainan 570228, China.
2Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China.
Abstract:

We consider a variation of a classical Turán-type extremal problem due to Bollobás \([2,p. 398, no. 13]\) as follows: determine the smallest even integer \(\sigma(C^k,n)\) such that every graphic sequence \(\pi = (d_1,d_2,\ldots,d_n)\) with term sum \(\sigma(\pi) = d_1 + d_2 + \cdots + d_n \geq \sigma(C^k,n)\) has a realization \(G\) containing a cycle with \(k\) chords incident to a vertex on the cycle. Moreover, we also consider a variation of a classical Turán-type extremal result due to Faudree and Schelp \([7]\) as follows: determine the smallest even integer \(\sigma(P_\ell,n)\) such that every graphic sequence \(\pi = (d_1,d_2,\ldots,d_n)\) with \(\sigma(\pi) \geq \sigma(P_\ell,n)\) has a realization \(G\) containing \(P_\ell\) as a subgraph, where \(P_\ell\) is the path of length 2. In this paper, we determine the values of \(\sigma(P_\ell,n)\) for \(n \geq \ell+1\) and the values of \(\sigma(C^k,n)\) for \(n \geq (k+3)(2k+5)\).

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;