
Ars Combinatoria
ISSN 0381-7032 (print), 2817-5204 (online)
Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.
Information Menu
- Research article
- Full Text
- Ars Combinatoria
- Volume 097
- Pages: 271-279
- Published: 31/10/2010
In many papers, the relation between the domination number of a product of graphs and the product of domination numbers of factors is studied. Here we investigate this problem for domination and total domination numbers in the cross product of digraphs. We give analogues of known results for graphs, and we also present new results for digraphs with sources. Using these results, we find domination (total domination) numbers for some classes of digraphs.
- Research article
- Full Text
- Ars Combinatoria
- Volume 097
- Pages: 257-270
- Published: 31/10/2010
Let \(P_{k+1}\) denote a path of length \(k\) and let \(C_k\) denote a cycle of length \(k\). As usual, \(K_n\) denotes the complete graph on \(n\) vertices. In this paper, we investigate decompositions of \(K_n\) into paths and cycles, and give some necessary and/or sufficient conditions for such a decomposition to exist. Besides, we obtain a necessary and sufficient condition for decomposing \(K_n\) into \(p\) copies of \(P_5\) and \(q\) copies of \(C_4\) for all possible values of \(p\geq 0\) and \(q\geq 0\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 097
- Pages: 249-255
- Published: 31/10/2010
Given a simple connected undirected graph \(G\), the Wiener index \(W(G)\) of \(G\) is defined as half the sum of the distances over all pairs of vertices of \(G\). In practice, \(G\) corresponds to what is known as the molecular graph of an organic compound. We obtain a sharp lower bound for \(W(G)\) of an arbitrary graph in terms of the order, size, and diameter of \(G\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 097
- Pages: 241-248
- Published: 31/10/2010
The Zagreb indices are topological indices of graphs, which are defined as:\(M_1(G) = \sum\limits_{v \in V(G)} (d(v))^2\), \(M_2(G) = \sum\limits_{uv \in E(G)} d(u)d(v)\) .In this paper, we determine the upper and lower bounds for the Zagreb indices of unicyclic graphs in terms of their order and girth. In each case, we characterize the extremal graphs.
- Research article
- Full Text
- Ars Combinatoria
- Volume 097
- Pages: 225-239
- Published: 31/10/2010
In this paper, we are concerned with Leibniz numbers. We establish a series of identities involving Leibniz numbers, Stirling numbers, harmonic numbers, arctan numbers by making use of generating functions. In addition, we give the asymptotic expansion of certain sums related to Leibniz numbers by Laplace’s method.
- Research article
- Full Text
- Ars Combinatoria
- Volume 097
- Pages: 217-224
- Published: 31/10/2010
We consider the undirected simple connected graph for which edges fail independently of each other with equal probability \(1 – p\) and nodes are perfect. The all-terminal reliability of a graph \(G\) is the probability that the spanning subgraph of surviving edges is connected, denoted as \(R(G,p)\). Graph \(G \in \Omega(n,e)\) is said to be uniformly least reliable if \(R(G,p) \leq R(G’,p)\) for all \(G’ \in \Omega(n,e)\), and for all edge failure probabilities \(0 < 1 – p < 1\). In this paper, we prove the existence of uniformly least reliable graphs in the class \(\Omega(n,e)\) for \(e \leq n + 1\) and give their topologies.
- Research article
- Full Text
- Ars Combinatoria
- Volume 097
- Pages: 203-215
- Published: 31/10/2010
We study V- and \(\Lambda\)-patterns which generalize valleys and peaks, as well as increasing and decreasing runs, in permutations. A complete classification of permutations (multi)-avoiding V- and \(\Lambda\)-patterns of length \(4\) is given. We also establish a connection between restricted permutations and matchings in the coronas of complete graphs.
- Research article
- Full Text
- Ars Combinatoria
- Volume 097
- Pages: 193-201
- Published: 31/10/2010
Let \(G\) be a connected graph. A weakly connected dominating set of \(G\) is a dominating set \(D\) such that the edges not incident to any vertex in \(D\) do not separate the graph \(G\). In this paper, we first consider the relationship between weakly connected domination number \(\gamma_w(G)\) and the irredundance number \(ir(G)\). We prove that \(\gamma_w(G) \leq \frac{5}{2}ir(G) – 2\) and this bound is sharp. Furthermore, for a tree \(T\), we give a sufficient and necessary condition for \(\gamma_c(T) = \gamma_w(T) + k\), where \(\gamma_c(T)\) is the connected domination number and \(0 \leq k \leq \gamma_w(T) – 1\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 097
- Pages: 175-182
- Published: 31/10/2010
For two vertices \(u\) and \(v\) in a strong digraph \(D\), the strong distance \(sd(u,v)\) between \(u\) and \(v\) is the minimum size (the number of arcs) of a strong sub-digraph of \(D\) containing \(u\) and \(v\). The strong eccentricity \(se(v)\) of a vertex \(v\) of \(D\) is the strong distance between \(v\) and a vertex farthest from \(v\). The strong radius \(srad(D)\) (resp. strong diameter \(sdiam(D)\)) of \(D\) is the minimum (resp. maximum) strong eccentricity among all vertices of \(D\). The lower (resp. upper) orientable strong radius \(srad(G)\) (resp. \(SRAD(G)\)) of a graph \(G\) is the minimum (resp. maximum) strong radius over all strong orientations of \(G\). The lower (resp. upper) orientable strong diameter \(sdiam(G)\) (resp. \(SDIAM(G)\)) of a graph \(G\) is the minimum (resp. maximum) strong diameter over all strong orientations of \(G\). In this paper, we determine the lower orientable strong radius and strong diameter of the Cartesian product of complete graphs, and give the upper orientable strong diameter and the bounds on the upper orientable strong radius of the Cartesian product of complete graphs.
- Research article
- Full Text
- Ars Combinatoria
- Volume 097
- Pages: 161-174
- Published: 31/10/2010
In this paper, we show that the disjoint union of two cordial graphs, one of them is of even size, is cordial and the join of two cordial graphs, both are of even size or one of them is of even size and one of them is of even order, is cordial. We also show that \(C_m \cup C_n \) is cordial if and only if \(m+n \not\equiv 2 \pmod{4}\) and \(mC_n\) is cordial if and only if \(mn \not\equiv 2 \pmod{4}\) and for \(m, n \geq 3\), \(C_m + C_n\) is cordial if and only if \((m, n) \neq (3, 3)\) and \(\{m, n\} \not\equiv \{0, 2\} \pmod{4}\).
Finally, we discuss the cordiality of \(P_n^k\).