Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Alan C.H.Ling1
1Department of Computer Science University of Vermont Burlington, Vermont USA 05405
Abstract:

In \([1]\), well-ordered Steiner triple systems were introduced and used to construct \(1\)-perfect partitions of the \(n\)-cube. However, non-trivial well-ordered Steiner triple systems were only known to exist when \(v =15\). In this short note, we present a simple construction to give a non-trivial well-ordered Steiner triple system of order \(v = 2^n – 1\) for all \(n \geq 5\) and this settles a problem in \([1]\).

Yichao Chen1, Yanpei Liu2
1College of Mathematics and Econometrics, Hu nan University, Changsha, 410082, China
2Department of Mathematics, Beijing JiaoTong University, Beijing, 100044, China
Abstract:

Different neighbor conditions are considered in \([3,4,9]\) for a graph up-embeddable. In this paper, we consider the neighbor conditions of all the pairs of vertices with diameter \(2\) and obtain the following new result: if \(|N_G(u) \cap N_G(v)| \geq 2\) for any two vertices \(u,v \in D\) where \(D = \{(u, v) | d_G(u, v) = 2, u,v \in V(G)\}\), then \(G\) is up-embeddable.

Daniele A.Gewurz1, Francesca Merola2
1Dipartimento di Matematica Université di Roma “La Sapienza” Pile Aldo Moro, 2 00185 Roma, Italia
2Dipartimento di Matematica Universita di Roma Tre Largo S. Leonardo Murialdo, 1 00146 Roma, Italia
Abstract:

We study the factorisations of a cyclic permutation of length \(n\) as a product of a minimal number of transpositions, calculating the number \(f(n, m)\) of factorisations in which a fixed element is moved \(m\) times. In this way, we also give a new proof-in the spirit of Clarke’s proof of Cayley’s theorem on the number of labelled trees-of the fact that there are \(n^{n-2}\) such factorisations.

E. Kilic1, D. Tasci2, P. Haukkanen3
1TOBB Economics anp TECHNOLOGY UNIVERSITY MATHEMATICS DEPARTMENT 06560 ANKARA TURKEY
2Gazi UNIVERSITY, MATHEMATICS DEPARTMENT, 06500 ANKARA TURKEY
3DEPARTMENT OF MATHEMATICS, STATISTICS AND PHILOSOPHY, FI-33014 UNIVERSITY OF TAMPERE, FINLAND
Abstract:

We show that there are relationships between a generalized Lucas sequence and the permanent and determinant of some Hessenberg matrices.

Nancy Eaton1, Gary Tiner2
1University of Rhode Island
2Faulkner University
Abstract:

Suppose \(G\) is a simple graph with average vertex degree greater than \(k – 2\). Erdős and Sós conjectured that \(G\) contains every tree on \(k\) vertices. Sidorenko proved \(G\) contains every tree that has a vertex \(v\) with at least \(\left\lfloor\frac{k}{2}\right\rfloor – 1\) leaf neighbors. We prove this is true if \(v\) has only \(\left\lceil\frac{k}{2}\right\rceil – 2\) leaf neighbors. We generalize Sidorenko’s result by proving that if \(G\) has minimum degree \(d\), then \(G\) contains every tree that has a vertex with at least \((k – 1) – d\) leaf neighbors. We use these results to prove that if \(G\) has average degree greater than \(k – 2\) and minimum degree at least \(k – 4\), then \(G\) contains every tree on \(k\) vertices.

Xu Huafeng1,2, Bo Xianhui3
1College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangshu 210016, P. R. China
2Henan University of Urban Construction, Pingdingshan, Henan 467001, P. R. China
3School of Accountancy, Central University of Finance and Economics, Beijing 100081, P. R. China
Abstract:

A simple graph \(G\)is induced matching extendable, shortly IM-extendable, if every induced matching of \(G\) is included in a perfect matching of \(G\). The cyclic graph \(C_{2n}(1,k)\) is the graph with \(2n\) vertices \(x_0, x_1, \ldots, x_{2n-1}\), such that \(x_ix_j\) is an edge of \(C_{2n}(1,k)\) if either \(i-j \equiv \pm 1 \pmod{2n}\) or \(i-j \equiv \pm k \pmod{2n}\). We show in this paper that the only IM-extendable graphs in \(C_{2n}(1,k)\) are \(C_{2n}(1,3)\) for \(n \geq 4\); \(C_{2n}(1,n-1)\) for \(n \geq 3\); \(C_{2n}(1,n)\) for \(n \geq 2\); \(C_{2n}(1,\frac{n}{2})\) for \(n \geq 4\); \(C_{2n}(1,\frac{2n+1}{3})\) for \(n \geq 5\); \(C_{2n}(1,\frac{2n+2}{3})\) for \(n \leq 14\); \(C_{2n}(1,\frac{2n-2}{3})\) for \(n \leq 16\); \(C_{2n}(1,2)\) for \(n \leq 4\); \(C_{20}(1,8)\); \(C_{30}(1,6)\); \(C_{40}(1,8)\); \(C_{60}(1,12)\) and \(C_{80}(1,10)\).

Wantao Ning1, Qiuli Li1, Heping Zhang1
1School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, P. R. China,
Abstract:

For a vertex \(v\) in a graph \(G\), a local cut at \(v\) is a set of size \(d(v)\) consisting of the vertex \(x\) or the edge \(vx\) for each \(x \in N(v)\). A set \(U \subseteq V(G) \cup E(G)\) is a diameter-increasing set of \(G\) if the diameter of \(G – U\) is greater than the diameter of \(G\). In the present work, we first prove that every smallest generalized cutset of Johnson graph \(J(n,k)\) is a local cut except for \(J(4,2)\). Then we show that every smallest diameter-increasing set in \(J(n,k)\) is a subset of a local cut except for \(J(n,2)\) and \(J(6, 3)\).

W.A. Schmid1, J.J. Zhuang2
1Institut fir Mathematik und wissenschaftliches Rechnen, Karl-Franzens-Universitat Graz, Heinrichatrafe 36, 8010 Graz, Austria,
2Department of Mathematics, Dalian Maritime Univer- sity, Dalian, 116024, China,
Abstract:

Let \(G\) be a finite abelian group with exponent \(n\). Let \(s(G)\) denote the smallest integer \(l\) such that every sequence over \(G\) of length at least \(l\) has a zero-sum subsequence of length \(n\). For \(p\)-groups whose exponent is odd and sufficiently large (relative to Davenport’s constant of the group) we obtain an improved upper bound on \(s(G)\), which allows to determine \(s(G)\) precisely in special cases. Our results contain Kemnitz’ conjecture, which was recently proved, as a special case.

Weidong Fang1, Huili Dong1, Shenglin Zhou1
1Department of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, China
Abstract:

Let \(\mathcal{D}\) be a \(2\)-\((v,k,4)\) symmetric design, and \(G\) be a subgroup of the full automorphism group of \(\mathcal{D}\). In this paper, we prove that if \(G \leq {Aut}(\mathcal{D})\) is flag-transitive, point-primitive then \(G\) is of affine or almost simple type. We prove further that if a nontrivial \(2\)-\((v, k, 4)\) symmetric design has a flag-transitive, point-primitive, almost simple automorphism group \(G\), then \(\text{Soc}(G)\) is not a sporadic simple group.

Alessandro Conflitti1
1Fakultat fiir Mathematik Universitat Wien NordbergstraBe 15 A-1090 Wien Austria
Abstract:

We prove explicit formulas for the rank polynomial and Whitney numbers of the distributive lattice of order ideals of the garland poset, ordered by inclusion.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;