
Ars Combinatoria
ISSN 0381-7032 (print), 2817-5204 (online)
Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.
Information Menu
- Research article
- Full Text
- Ars Combinatoria
- Volume 095
- Pages: 305-319
- Published: 30/04/2010
A semi-double graph is such a connected multi-graph that each multi-edge consists of two edges. If there is at most one loop at each vertex of a semi-double graph, then this graph is called a single-petal graph. In this paper, we obtained that if \(G\) is a connected (resp. \(2\)-edge-connected, \(3\)-edge-connected) simple graph of order \(n\), then \(G\) is upper embeddable if \(d_G(u) + d_G(v) \geq \left\lceil\frac{2n-3}{2}\right\rceil\) (resp. \(d_G(u) + d_G(v) \geq \left\lceil\frac{2n-2}{3}\right\rceil, d_G(u) + d_G(v) \geq \left\lceil\frac{2n-23}{2}\right\rceil\)) for any two adjacent vertices \(u\) and \(v\) of \(G\). In addition, by means of semi-double graph and single-petal graph, the upper embeddability of multi-graph and pseudograph are also discussed in this paper.
- Research article
- Full Text
- Ars Combinatoria
- Volume 095
- Pages: 297-303
- Published: 30/04/2010
Let \(d(n, k)\) denote the number of derangements (permutations without fixed points) with \(k\) cycles of the set \([n] = \{1, 2, \ldots, n\}\). In this paper, a new explicit expression for \(d(n, k)\) is presented by graph theoretic method, and a concise regular binary tree representation for \(d(n, k)\) is provided.
- Research article
- Full Text
- Ars Combinatoria
- Volume 095
- Pages: 289-296
- Published: 30/04/2010
This paper devotes to the investigation of \(3\)-designs admitting the special projective linear group \(\text{PSL}(2,q)\) as an automorphism group. When \(q \equiv 3 \pmod{4}\), we determine all the possible values of \(\lambda\) in the simple \(3\)-\((q+1, 7, \lambda)\) designs admitting \(\text{PSL}(2,q)\) as an automorphism group.
- Research article
- Full Text
- Ars Combinatoria
- Volume 095
- Pages: 277-287
- Published: 30/04/2010
We give an optimal degree condition for a tripartite graph to have a spanning subgraph consisting of complete graphs of order \(3\). This result is used to give an upper bound of \(2\Delta\) for the strong chromatic number of \(n\) vertex graphs with \(\Delta \geq n/6\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 095
- Pages: 257-275
- Published: 30/04/2010
A partial Latin square \(P\) of order \(n\) is an \(n \times n\) array with entries from the set \(\{1, 2, \ldots, n\}\) such that each symbol is used at most once in each row and at most once in each column. If every cell of the array is filled, we call \(P\) a Latin square. A partial Latin square \(P\) of order \(n\) is said to be avoidable if there exists a Latin square \(L\) of order \(n\) such that \(P\) and \(L\) are disjoint. That is, corresponding cells of \(P\) and \(L\) contain different entries. In this note, we show that, with the trivial exception of the Latin square of order \(1\), every partial Latin square of order congruent to \(1\) modulo \(4\) is avoidable.
- Research article
- Full Text
- Ars Combinatoria
- Volume 095
- Pages: 247-255
- Published: 30/04/2010
For positive integers \(k \leq n\), the crown \(C_{n,k}\) is the graph with vertex set \(\{a_0, a_1, \ldots, a_{n-1}, b_0, b_1, \ldots, b_{n-1}\}\) and edge set \(\{a_ib_j : 0 \leq i \leq n-1, j = i+1, i+2, \ldots, i+k \pmod{n}\}\). A caterpillar is a tree of order at least three which contains a path such that each vertex not on the path is adjacent to a vertex on the path. Being a connected bipartite graph, a caterpillar is balanced if the two parts of the bipartition of its vertices have equal size; otherwise, it is unbalanced. In this paper, we obtain the necessary and sufficient condition for balanced-caterpillar factorization of crowns. The criterion for unbalanced-caterpillar factorization of crowns is open. We also obtain the necessary and sufficient condition for directed caterpillar factorization of symmetric crowns.
- Research article
- Full Text
- Ars Combinatoria
- Volume 095
- Pages: 235-245
- Published: 30/04/2010
This paper determines that the connectivity of the Cartesian product \(G_1 \square G_2\) of two graphs \(G_1\) and \(G_2\) is equal to \(\min\{\kappa_1v_2 + \kappa_2v_1, \delta_1 + \delta_2 \}\), where \(v_i, \kappa_i\), and \(\delta_i\) are the order, connectivity, and minimum degree of \(G_i\), respectively, for \(i = 1, 2\). Additionally, some necessary and sufficient conditions are given for \(G_1 \square G_2\) to be maximally connected and super-connected.
- Research article
- Full Text
- Ars Combinatoria
- Volume 095
- Pages: 225-234
- Published: 30/04/2010
This paper deals with two types of graph labelings namely, super \((a, d)\)-edge antimagic total labeling and \((a, d)\)-vertex antimagic total labeling. We provide super \((a, d)\)-edge antimagic total labeling for disjoint unions of Harary graphs and disjoint unions of cycles. We also provide \((a,d)\)-vertex antimagic total labeling for disjoint unions of Harary graphs, disjoint unions of cycles, sun graphs and disjoint unions of sun graphs,
- Research article
- Full Text
- Ars Combinatoria
- Volume 095
- Pages: 217-224
- Published: 30/04/2010
The existence question for a \(3\)-\((16,7,5)\) design is open, In this paper, we examine possible automorphisms of this design. We consider a minimum subset of basic permutations consisting of cycles of prime length \(p\) and prove that if a \(3\)-\((16,7,5)\) design exists, then it is either rigid or admits basic automorphisms with cycles of length \(2\) or \(3\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 095
- Pages: 201-216
- Published: 30/04/2010
We define a product summation of ordered partition \(f_j(n,m,r) = \sum{c_1^r c_2^r \ldots c_j^rc_{j+1} \ldots c_m}\), where the sum is over all positive integers \(c_1, c_2, \ldots, c_m\) with \(c_1 + c_2 + \cdots + c_m = n\) and \(0 \leq j \leq m\). We concentrate on \(f_m(n,m,r)\) in this paper. The main results are as follows:
(1) The generating function for \(f_m(n,m,r)\) and the explicit formula for \(f_m(n,m,2) , f_m(n,m,3)\) and \(f_m(n,m, 4)\) are obtained.
(2) The relationship between \(f_j(n,m,r)\) for \(r = 2,3\) and the Fibonacci and Lucas numbers is found.