Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Hau Chan1, Dinesh G.Sarvate2
1CoLLEGE oF CHARLESTON, DEPT, OF MATH., CHARLESTON, SC, 29424
2COLLEGE oF CHARLESTON, DEPT. oF MATH., CHARLESTON, SC, 29424
Abstract:

It is shown that for \(2 \leq t \leq n-3\), a strict \(t\)-SB\((n,n-1)\) design does not exist, but for \(n \geq 3\), a non-strict \(2\)-SB\((n,n-1)\) design exists. The concept of large sets for Steiner triple systems is extended to SB designs and examples of large sets for SB designs are given.

E.M. Elsayed1, Bratislav Iricanin2, Stevo Stevic3
1Department of Mathematica, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
2Faculty of Electrical Engineering, Bulevar Kralja Aleksandra 73, 11000 Beograd, Serbia
3Mathematical Institute of the Serbian Academy of Sciences, Knez Mi- hailova 36/III, 11060 Beograd, Serbia
Abstract:

It is shown that every well-defined solution to the second-order difference equation in the title, when \((A_n)_{n \in 0}\) is a two-periodic sequence such that \(\max\{A_0, A_1\} \geq 0\), is eventually periodic with period two. In the case \(\max\{A_0, A_1\} \leq 0\), it is shown the existence of unbounded solutions, by describing all solutions in terms of \(A_0\), \(A_1\), \(x_{-1}\), and \(x_0\).

Meijie Ma1, Jun-Ming Xu2
1Department of Mathematics, Zhejiang Normal University Jinhua, 321004, China
2Department of Mathematics, University of Science and Technology of China Hefei, 230026, China
Abstract:

This paper considers the folded hypercube \(FQ_n\) as an enhancement on the hypercube, and obtains some algebraic properties of \(FQ_n\). Using these properties, the authors show that for any two vertices \(x\) and \(y\) in \(FQ_n\), with distance \(d\) and any integers \(h \in \{d, n+1- d\}\) and \(l\) with \(h \leq l \leq 2^n – 1\), \(FQ_n\) contains an \(xy\)-path of length \(l\) and no \(xy\)-path of other length, provided that \(l\) and \(h\) have the same parity.

P. Katerinis1, Tao Wang2
1Department of Informatics Athens University of Economics 76 Patission Str., Athens 10434 Greece
2Center for Combinatorics, LPMC Nankai University, Tianjin, China
Abstract:

Let \(G\) be a \(2\)-tough graph on at least five vertices and let \(e_1, e_2\) be a pair of arbitrarily given edges of \(G\). Then
(a) There exists a \(2\)-factor in G containing \(e_1, e_2\).
(b) There exists a \(2\)-factor in G avoiding \(e_1, e_2\).
(c) There exists a \(2\)-factor in G containing \(e_1\) and avoiding \(e_2\).

Ibrahim Yalcinkaya1
1Department of Mathematics, Faculty of Education, University of Selcuk, Meram Yeni Yol, Konya, TURKIYE
Abstract:

In this paper, a sufficient condition is obtained for the global asymptotic stability of the following system of difference equations
\[x_{n+1} = \frac{x_ny_{n-1}}{x_ny_{n-1}+1} ,y_{n+1}=\frac{y_n x_{n-1}}{y_nx_{n-1} + 1} , \quad n = 0, 1, 2, \ldots,\]
where the initial values \((x_k, y_k) \in (0, \infty) (\text{for} k=-1,0)\).

Gary Tiner1
1Faulkner University
Abstract:

Erdős and Sós conjectured in \(1962\) that if the average degree of a graph \(G\) exceeds \(k – 2\), then \(G\) contains every tree on \(k\) vertices. Results from Sauer and Spencer (and independent results from Zhou) prove the special case where \(G\) has \(k\) vertices. Results from Slater, Teo, and Yap prove the case where \(G\) has \(k + 1\) vertices. In \(1996\), Woźniak proved the case where \(G\) has \(k + 2\) vertices. We prove the conjecture for the case where \(G\) has \(k + 3\) vertices.

Guanghua Dong1, Yanpei Liu2, Ning Wang3
1Department of Mathematics, Tianjin Polytechnic University, Tianjin, 300160, P.R. China.
2Department of Mathematics, Beijing Jiaotong University, Betjing, 100044, P.R. China.
3Department of Information Science and Technology, Tianjin University of Finance and Economics, Tianjin, 200222, P.R. China.
Abstract:

A semi-double graph is a connected multi-graph such that each multi-edge consists of two edges. If there is at most one loop at each vertex of a semi-double graph, then this graph is called a single-petal graph. Via the degree-sum of nonadjacent vertices, the up-embeddability of semi-double graphs and single-petal graphs are discussed in this paper. And the results obtained in this paper can be extended to determine the up-embeddability of multi-graphs and pseudographs.

Wei Yangjiang 1, Tang Gaohua1, Su Huadong1
1School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, Guangxi, 530023, P. R. China
Abstract:

The commuting graph of an arbitrary ring \(R\), denoted by \(\Gamma(R)\), is the graph whose vertices are all non-central elements of \(R\), and two distinct vertices \(a\) and \(b\) are adjacent if and only if \(ab = ba\). In this paper, we investigate the connectivity, the diameter, the maximum degree and the minimum degree of the commuting graph of the quaternion algebra \(\mathbb{Z}_n[i, j, k]\).

T.Tamizh Chelvam1, G.S. Grace Prema2
1Department of Mathematics Manonmaniam Sundaranar University Tirunelveli 627 012 Tamil Nadu, India
2Department of Mathematics St. John’s College Tirunelveli — 627 002 Tamil Nadu, India.
Abstract:

A set \(D\) of vertices of a graph \(G = (V, E)\) is a \(\textit{dominating set}\) if every vertex of \(V-D\) is adjacent to at least one vertex in \(D\). The \(\textit{domination number}\) \(\gamma(G)\) is the minimum cardinality of a dominating set of \(G\). A subset of \(V-D\), which is also a dominating set of \(G\), is called an \(\textit{averse dominating set}\) of \(G\) with respect to \(D\). The \(\textit{inverse domination number}\) \(\gamma'(G)\) equals the minimum cardinality of an inverse dominating set \(D\). In this paper, we study classes of graphs whose domination and inverse domination numbers are equal.

Wen Liu1, Jing Lin2
1Math. & Inf. College, Hebei Normal University, Shijiazhuang, 050016, China
2Beijing Daxing No.5 High School, Beijing, 102600, China
Abstract:

A strongly connected digraph \(\Gamma\) is said to be walk regular if for any nonnegative integer \(l\) and any vertex \(u\) of \(\Gamma\), the number of circuits of length \(l\) containing \(u\) depends only on \(l\). This family of digraphs is a directed version of walk regular graphs. In this paper, we discuss some basic properties of walk regular digraphs.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;