Ars Combinatoria
ISSN 0381-7032 (print), 2817-5204 (online)
Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.
Information Menu
- Research article
- Full Text
- Ars Combinatoria
- Volume 033
- Pages: 343-347
- Published: 30/06/1992
- Research article
- Full Text
- Ars Combinatoria
- Volume 033
- Pages: 337-342
- Published: 30/06/1992
Let \(x_1, x_2, \ldots, x_v\) be commuting indeterminates over the integers. We say an \(v \times v \times v \ldots \times v \) n-dimensional matrix is a proper \(v\)-dimensional orthogonal design of order \(v\) and type \((s_1, s_2, \ldots, s_r)\) (written \(\mathrm{OD}^n(s_1, s_2, \ldots, s_r)\)) on the indeterminates \(x_1, x_2, \ldots, x_r\) if every 2-dimensional axis-normal submatrix is an \(\mathrm{OD} (s_1, s_2, \ldots, s_r)\) of order \(v\) on the indeterminates \(x_1, x_2, \ldots, x_r\). Constructions for proper \(\mathrm{OD}^n(1^2)\) of order 2 and \(\mathrm{OD}^n(1^4)\) of order 4 are given in J. Seberry (1980) and J. Hammer and J. Seberry (1979, 1981a), respectively. This paper contains simple constructions for proper \(\mathrm{OD}^n(1^{2})\), \(\mathrm{OD}^n(1^{4})\), and \(\mathrm{OD}^n(1^{ 8})\) of orders 2, 4, and 8, respectively. Prior to this paper no proper higher dimensional OD on more than 4 indeterminates was known.
- Research article
- Full Text
- Ars Combinatoria
- Volume 033
- Pages: 329-336
- Published: 30/06/1992
Bondy and Fan recently conjectured that if we associate non-negative real weights to the edges of a graph so that the sum of the edge weights is \(W\), then the graph contains a path whose weight is at least \(\frac{2W}{n}\). We prove this conjecture.
- Research article
- Full Text
- Ars Combinatoria
- Volume 033
- Pages: 321-328
- Published: 30/06/1992
Let \(H(V, E)\) be an \(r\)-uniform hypergraph. Let \(A \subset V\) be a subset of vertices and define \(\deg_H(A) = |\{e \in E : A \subset e\}|\).
We say that \(H\) is \((k, m)\)-divisible if for every \(k\)-subset \(A\) of \(V(H)\), \(\deg_H(A) \equiv 0 \pmod{m}\). (We assume that \(1 \leq k < r\)).
Given positive integers \(r \geq 2\), \(k \geq 1\) and \(q\) a prime power, we prove that if \(H\) is an \(r\)-uniform hypergraph and \(|E| > (q-1) \binom{\mid V \mid}{k} \), then \(H\) contains a nontrivial subhypergraph \(F\) which is \((k, q)\)-divisible.
- Research article
- Full Text
- Ars Combinatoria
- Volume 033
- Pages: 319
- Published: 30/06/1992
- Research article
- Full Text
- Ars Combinatoria
- Volume 033
- Pages: 311-317
- Published: 30/06/1992
It is well known that there exist complete \(k\)-caps in \(\mathrm{PG}(3,q)\) with \(k \geq \frac{q^2+q+4}{2}\) and it is still unknown whether or not complete \(k\)-caps of size \(k < \frac{q^2+q+4}{2}\) and \(q\) odd exist. In this paper sufficient conditions for the existence of complete \(k\)-caps in \(\mathrm{PG}(3,q)\), for good \(q \geq 7\) and \(k < \frac{q^2+q+4}{2}\), are established and a class of such complete caps is constructed.
- Research article
- Full Text
- Ars Combinatoria
- Volume 033
- Pages: 305-310
- Published: 30/06/1992
It is proved in this paper that for any given odd integer \(\lambda \geq 1\), there exists an integer \(v_0 = v_0(\lambda)\), such that for \(v > v_0\), the necessary and sufficient conditions for the existence of an indecomposable triple system \(B(3,\lambda; v)\) without repeated blocks are \(\lambda(v – 1) \equiv 0 \pmod{2}\) and \(\lambda{v(v – 1)} \equiv 0 \pmod{6}.\)
- Research article
- Full Text
- Ars Combinatoria
- Volume 033
- Pages: 300-304
- Published: 30/06/1992
We prove that if \(G\) is a 1-tough graph with \(n = |V(G)| \geq 13\) such that
the degree sum of any three independent vertices is at least \(\frac{3n-14}{2}\), then \(G\) is hamiltonian.
- Research article
- Full Text
- Ars Combinatoria
- Volume 033
- Pages: 295-299
- Published: 30/06/1992
This paper deals with the problem of labeling the vertices, edges, and interior faces of a grid graph in such a way that the label of the face itself and the labels of vertices and edges surrounding that face add up to a value prescribed for that face.
- Research article
- Full Text
- Ars Combinatoria
- Volume 033
- Pages: 289-294
- Published: 30/06/1992
Let \(G\) be a 3-edge-connected simple triangle-free graph of order \(n\) . Using a contraction method, we prove that if \(\delta(G) \geq 4\) and if \(d(u) + d(v) > n/10\) whenever \(uv \in E(G)\) (or whenever \(uv \notin E(G)\) ), then the graph \(G\) has a spanning eulerian sub-
graph. This implies that the line graph \(L(G)\) is hamiltonian. We shall also characterize the extremal graphs.