Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

A. M. Assaf1, W. H. Mills2, R.C. Mullin3
1Central Michigan University
2Institute for Defense Analyses Princeton
3University of Waterloo
Abstract:

A tricover of pairs by quintuples on a \(v\)-element set \(V\) is a family of 5-element subsets of \(V\), called blocks, with the property that every pair of distinct elements of \(V\) occurs in at least three blocks. If no other such tricover has fewer blocks, the tricover is said to be minimum, and the number of blocks in a minimum tricover is the tricovering number \(C_3(v,5,2)\), or simply \(C_3(v)\). It is well known that \(C_3(v) \geq \lceil \frac{{v} \lceil \frac {3(v-1)}{4} \rceil} {5} \rceil = B_3(v)\), where \(\lceil x\rceil\) is the smallest integer that is at least \(x\). It is shown here that if \(v \equiv 1 \pmod{4}\), then \(C_3(v) = B_3(v) + 1\) for \(v \equiv 9\) or \(17 \pmod{20}\), and \(C_3(v) = B_3(v)\) otherwise.

W. Edwin Clark1, Larry A. Dunning2
1 Department of Mathematics University of South Florida Tampa, Florida U.S.A. 33620-5700
2Department of Computer Science Bowling Green State University Bowling Green, Ohio U.S.A. 43403-0214
Abstract:

We investigate collections \( {H} = \{H_1, H_2, \ldots, H_m\}\) of pairwise disjoint \(w\)-subsets \(H_i\) of an \(r\)-dimensional vector space \(V\) over \( {GF}(q)\) that arise in the construction of byte error control codes. The main problem is to maximize \(m\) for fixed \(w, r,\) and \(q\) when \({H}\) is required to satisfy a subset of the following properties: (i) each \(H_i\) is linearly independent; (ii) \(H_i \cap H_j = \{0\}\) if \(i \neq j\); (iii) \((H_i) \cap (H_j) = \{0\}\) if \(i \neq j\);( iv) any two elements of \(H_i \cup H_j\) are linearly independent;(v) any three elements of \(H_1 \cup H_2 \cup \cdots \cup H_m\) are linearly independent.
Here \((x)\) denotes the subspace of \(V\) spanned by \(X\). Solutions to these problems yield linear block codes which are useful in controlling various combinations of byte and single bit errors in computer memories. For \(r = w + 1\) and for small values of \(w\) the problem is solved or nearly solved. We list a variety of methods for constructing such partial partitions and give several bounds on \(m\).

Oscar Moreno1
1 Department of Mathematics University of Puerto Rico Rio Piedras PUERTO RICO 00931
Abstract:

There is a conjecture of Golomb and Taylor that asserts that the Welch construction for Costas sequences with length \(p-1\), \(p\) prime, is the only one with the property of single periodicity.

In the present paper we present and prove a weaker conjecture: the Welch construction is the only one with the property that its differences are a shift of the original sequence.

Alphonse Baartmans1, Joseph Yucas2
1 Department of Mathematics Michigan Technological University Houghton, MI U.S.A. 49931-1295
2Department of Mathematics Southern Iiinois University—-Carbondale U.S.A. 62901-4408
Abstract:

In this paper we give a necessary condition for the Steiner system \(S(3,4,16)\) obtained from a one-point extension of the points and lines of \( {PG}(3,2)\) to be further extendable to a Steiner system \(S(4,5,17)\).

Y.H. Peng1, C.C. Chen2, K.M. Koh2
1 Department of Mathematics Universiti Pertanian Malaysia 48400 Serdang, Malaysia
2 Department of Mathematics National University of Singapore Kent Ridge, Singapore 05-11
Abstract:

The edge-toughness \(\tau_1(G)\) of a graph \(G\) is defined as

\[\tau_1(G) = \min\left\{\frac{|E(G)|}{w(G-X)} \mid X { is an edge-cutset of } G\right\},\]

where \(w(G-X)\) denotes the number of components of \(G-X\). Call a graph \(G\) balanced if \(\tau_1(G) = \frac{|E(G)|}{w(G-E(G))-1}\). It is known that for any graph \(G\) with edge-connectivity \(\lambda(G)\),
\(\frac{\lambda(G)}{2} < \tau_1(G) \leq \lambda(G).\) In this paper we prove that for any integer \(r\), \(r > 2\) and any rational number \(s\) with \(\frac{r}{2} < s \leq r\), there always exists a balanced graph \(G\) such that \(\lambda(G) = r\) and \(\tau_1(G) = s\).

Todd Hoffman1, John Mitchem1, Edward Schmeichel1
1Department of Mathematics and Computer Science San Jose State University San Jose, CA 95192
J.D. Key1, K. Mackenzie1
1 Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, U.S.A.
Abstract:

Using the permutation action of the group \( {PSL}_2(2^m)\) on its dihedral subgroups of order \(2(2^m + 1)\) for the description of the class of designs \(W(2^m)\) derived from regular ovals in the Desarguesian projective plane of order \(2^m\), we construct a \(2\)-design of ovals for \(W(2^m)\) for \(m \geq 3\), and thus determine certain properties of the binary codes of these classes of designs.

Charles J. Colbourn1, Dean G. Hoffman1, Charles C. Lindner 1
1Department of Algebra, Combinatorics and Analysis 120 Mathematics Annex Auburn University Auburn, Alabama 36849-5307
Abstract:

We give a complete solution to the intersection problem for a pair of Steiner systems \(S(2,4,v)\), leaving a handful of exceptions when \(v = 25, 28,\) {and } \(37\).

Y. H. Harris1
1Kwong SUNY College at Fredonia Fredonia, NY 14063
Abstract:

A scheme for classifying hamiltonian cycles in \(P_m \times P_n\), is introduced.We then derive recurrence relations, exact and asymptotic values for the number of hamiltonian cycles in \(P_4 \times P_n\) and \(P_5 \times P_n\).

S.C. Locke1
1Florida Atlantic University
Abstract:

If each pair of vertices in a graph \(G\) is connected by a long path, then the cycle space of \(G\) has a basis consisting of long cycles. We propose a conjecture regarding the above relationship. A few results supporting the conjecture are given.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;