
Ars Combinatoria
ISSN 0381-7032 (print), 2817-5204 (online)
Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.
Information Menu
- Research article
- Full Text
- Ars Combinatoria
- Volume 085
- Pages: 257-269
- Published: 31/10/2007
Let \(F(x,y) = ax^2 + bxy + cy^2\) be a binary quadratic form of discriminant \(\Delta = b^2 – 4ac\) for \(a,b,c \in \mathbb{Z}\), let \(p\) be a prime number and let \(\mathbb{F}_p\) be a finite field. In this paper we formulate the number of integer solutions of cubic congruence \(x^3 + ax^2 + bx + c \equiv 0 \pmod{p}\) over \(\mathbb{F}_p\), for two specific binary quadratic forms \(F_1^k(x,y) = x^2 + kxy + ky^2\) and \(F_2^k(x,y) = kx^2 + kxy + k^2y^2\) for integer \(k\) such that \(1 \leq k \leq 9\). Later we consider representation of primes by \(F_1^k\) and \(F_2^k\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 085
- Pages: 225-231
- Published: 31/10/2007
A subset \(S \subseteq V(G)\) is independent if no two vertices of \(S\) are adjacent in \(G\). In this paper we study the number of independent sets which meets the set of leaves in a tree. In particular we determine the smallest number and the largest number of these sets among \(n\)-vertex trees. In each case we characterize the extremal graphs.
- Research article
- Full Text
- Ars Combinatoria
- Volume 085
- Pages: 19-31
- Published: 31/10/2007
A graph \(G\) is called super edge-magic if there exists a bijection \(f\) from \(V(G) \cup E(G)\) to \(\{1,2,\ldots,|V(G)| + |E(G)|\}\) such that \(f(u) + f(v) + f(uv) = k\) is a constant for any \(uv \in E(G)\) and \(f(V(G)) = \{1,2,\ldots,|V(G)|\}\). Yasuhiro Fukuchi proved that the generalized Petersen graph \(P(n, 2)\) is super edge-magic for odd \(n \geq 3\). In this paper, we show that the generalized Petersen graph \(P(n,3)\) is super edge-magic for odd \(n \geq 5\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 085
- Pages: 241-256
- Published: 31/10/2007
For any integer \(k\), two tournaments \(T\) and \(T’\), on the same finite set \(V\) are \(k\)-similar, whenever they have the same score vector, and for every tournament \(H\) of size \(k\) the number of subtournaments of \(T\) (resp. \(T’\)) isomorphic to \(H\) is the same. We study the \(4\)-similarity. According to the decomposability, we construct three infinite classes of pairs of non-isomorphic \(4\)-similar tournaments.
- Research article
- Full Text
- Ars Combinatoria
- Volume 085
- Pages: 3-17
- Published: 31/10/2007
In this paper, we define the Pell and Pell-Lucas \(p\)-numbers and derive the analytical formulas for these numbers. These formulas are similar to Binet’s formula for the classical Pell numbers.
- Research article
- Full Text
- Ars Combinatoria
- Volume 085
- Pages: 233-239
- Published: 31/10/2007
A graph \(G\) is called resonant if the boundary of each face of \(G\) is an \(F\)-alternating closed trail with respect to some \(f\)-factor \(F\) of \(G\). We show that a plane bipartite graph \(G\) is resonant if and only if it is connected and each edge of \(G\) is contained in an \(f\)-factor and not in another \(f\)-factor.
- Research article
- Full Text
- Ars Combinatoria
- Volume 085
- Pages: 221-224
- Published: 31/10/2007
- Research article
- Full Text
- Ars Combinatoria
- Volume 085
- Pages: 211-219
- Published: 31/10/2007
Let \(P_k\) denote a path with \(k\) vertices and \(k-1\) edges. And let \(\lambda K_{n,n}\) denote the \(\lambda\)-fold complete bipartite graph with both parts of size \(n\). A \(P_k\)-decomposition \(\mathcal{D}\) of \(\lambda K_{n,n}\) is a family of subgraphs of \(\lambda K_{n,n}\) whose edge sets form a partition of the edge set of \(\lambda K_{n,n}\), such that each member of \(\mathcal{G}\) is isomorphic to \(P_k\). Necessary conditions for the existence of a \(P_k\)-decomposition of \(\lambda K_{n,n}\) are (i) \(\lambda n^2 \equiv 0 \pmod{k-1}\) and (ii) \(k \leq n+1\) if \(\lambda=1\) and \(n\) is odd, or \(k \leq 2n\) if \(\lambda \geq 2\) or \(n\) is even. In this paper, we show these necessary conditions are sufficient except for the possibility of the case that \(k=3\), \(n=15\), and \(k=28\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 085
- Pages: 193-209
- Published: 31/10/2007
We describe a technique for producing self-dual codes over rings and fields from symmetric designs. We give special attention to biplanes and determine the minimum weights of the codes formed from these designs. We give numerous examples of self-dual codes constructed including an optimal code of length \(22\) over \(\mathbb{Z}_4\) with respect to the Hamming metric from the biplane of order \(3\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 085
- Pages: 183-192
- Published: 31/10/2007
The distance graph \(G(S, D)\) has vertex set \(V(G(S, D)) = S \cup \mathbb{R}^n\) and two vertices \(u\) and \(v\) are adjacent if and only if their distance \(d(u, v)\) is an element of the distance set \(D \subseteq \mathbb{R}_+\).
We determine the chromatic index, the choice index, the total chromatic number and the total choice number of all distance graphs \(G(\mathbb{R}, D)\), \(G(\mathbb{Q}, D)\) and \(G(\mathbb{Z}, D)\) transferring a theorem of de Bruijn and Erdős on infinite graphs. Moreover, we prove that \(|D| + 1\) is an upper bound for the chromatic number and the choice number of \(G(S,D)\), \(S \subseteq \mathbb{R}\).