Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Iwao Sato1
1Oyama National College of Technology, Oyama, Tochigi 323-0806, JAPAN
Abstract:

We give a decomposition formula for the edge zeta function of a regular covering \(\overrightarrow{G}\) of a graph \(G\). Furthermore, we present a determinant expression for some \(Z\)-function of an oriented line graph \(\overrightarrow{L}(G)\) of \(G\). As a corollary, we obtain a factorization formula for the edge zeta function of \(\overrightarrow{G}\) by \(L\)-functions of \(\overrightarrow{L}(G)\).

Shin-Shin Kao1, Cheng-Kuan Lin2, Hua-Min Huang2, Lih-Hsing Hsu3
1Department of Ap- plied Mathematics, Chung-Yuan Christian University, Chong-li City, Tao- Yuan, Taiwan 320, R.O.C.
2Department of Mathematics, National Central University
3Information Engineering Department, Ta Hwa Institute of Technology
Abstract:

A hamiltonian graph \(G\) is panpositionable if for any two different vertices \(x\) and \(y\) of \(G\) and any integer \(k\) with \(d_G(x,y) \leq k \leq |V(G)|/2\), there exists a hamiltonian cycle \(C\) of \(G\) with \(d_C(x,y) = k\). A bipartite hamiltonian graph \(G\) is bipanpositionable if for any two different vertices \(x\) and \(y\) of \(G\) and for any integer \(k\) with \(d_G(x,y) \leq k \leq |V(G)|/2\) and \((k – d_G(x,y))\) is even, there exists a hamiltonian cycle \(C\) of \(G\) such that \(d_C(x,y) = k\). In this paper, we prove that the hypercube \(Q_n\) is bipanpositionable hamiltonian if and only if \(n \geq 2\). The recursive circulant graph \(G(n;1,3)\) is bipanpositionable hamiltonian if and only if \(n \geq 6\) and \(n\) is even; \(G(n; 1,2)\) is panpositionable hamiltonian if and only if \(n \in \{5,6,7,8,9, 11\}\), and \(G(n; 1, 2,3)\) is panpositionable hamiltonian if and only if \(n \geq 5\).

Jason Albertson1, Audene Harris1, Larry Langley1, Sarah Merz1
1University of the Pacific, Stockton, CA 95211
Abstract:

The lower domination number of a digraph \(D\), denoted by \(\gamma(D)\), is the least number of vertices in a set \(S\), such that \(O[S] = V(D)\). A set \(S\) is irredundant if for all \(x \in S\), \(|O[x] – O[S – x]| \geq 1\). The lower irredundance number of a digraph, denoted \(ir(D)\), is the least number of vertices in a maximal irredundant set. A Gallai-type theorem has the form \(x(G) + y(G) = n\), where \(x\) and \(y\) are parameters defined on \(G\), and \(n\) is the number of vertices in the graph. We characterize directed trees satisfying \(\gamma(D) + \Delta_+(D) = n\) and directed trees satisfying \(ir(D) + \Delta_+(D) = n\).

Danuta Michalak1
1Faculty of Mathematics, Computer Science and Econometrics University of Zielona Gora ul. prof. Z. Szafrana 4a 65-516 Zielona Gora, Poland
Abstract:

We introduce a new concept of strong domination and connected strong domination in hypergraphs. The relationships between strong domination number and other hypergraph parameters like domination, independence, strong independence and irredundant numbers of hypergraphs are considered. There are also some chains of inequalities generalizing the famous Cockayne, Hedetniemi and Miller chain for parameters of graphs. There are given some generalizations of well known theorems for graphs, namely Gallai type theorem generalizing Nieminen, Hedetniemi and Laskar theorems.

Lian-Cui Zuo1,2, Jian-Liang Wu2, Jia-Zhuang Liu2
1Center for Combinatorics, Nankai University, Tianjin, 300071, China
2School of Mathematics, Shandong University, Jinan, 250100, China
Abstract:

The vertex linear arboricity \(vla(G)\) of a graph \(G\) is the minimum number of subsets into which the vertex set \(V(G)\) can be partitioned so that each subset induces a subgraph whose connected components are paths. In this paper, we seek to convert vertex linear arboricity into its fractional analogues, i.e., the fractional vertex linear arboricity of graphs. Let \(\mathbb{Z}_n\) denote the additive group of integers modulo \(n\). Suppose that \(C \subseteq \mathbb{Z}_n \backslash 0\) has the additional property that it is closed under additive inverse, that is, \(-c \in C\) if and only if \(c \in C\). A circulant graph is the graph \(G(\mathbb{Z}_n, C)\) with the vertex set \(\mathbb{Z}_n\) and \(i, j\) are adjacent if and only if \(i – j \in C\). The fractional vertex linear arboricity of the complete \(n\)-partite graph, the cycle \(C_n\), the integer distance graph \(G(D)\) for \(D = \{1, 2, \ldots, m\}\), \(D = \{2, 3, \ldots, m\}\) and \(D = P\) the set of all prime numbers, the Petersen graph and the circulant graph \(G(\mathbb{Z}_a, C)\) with \(C = \{-a + b, \ldots, -b, b, \ldots, a – b\}\) (\(a – 2b \geq b – 3 \geq 3\)) are determined, and an upper and a lower bounds of the fractional vertex linear arboricity of Mycielski graph are obtained.

Jianping Li1, George Steiner2
1Yunnan University, Kunming, China
2McMaster University, Hamilton, Ontario, Canada
Abstract:

Deciding whether a graph can be partitioned into \(k\) vertex-disjoint paths is a well-known NP-complete problem. In this paper, we give new sufficient conditions for a bipartite graph to be partitionable into \(k\) vertex-disjoint paths. We prove the following results for a simple bipartite graph \(G = (V_1, V_2, E)\) of order \(n\):(i) For any positive integer \(k\), if \(\|V_1| – |V_2\| \leq k\) and \(d_G(x) + d_G(y) \geq \frac{n-k+1}{2}\) for every pair \(x \in V_1\) and \(y \in V_2\) of nonadjacent vertices of \(G\), then \(G\) can be partitioned into \(k\) vertex-disjoint paths, unless \(k = 1\), \(|V_1| = |V_2| = \frac{n}{2}\) and \(G = K_{s,s} \cup K_{\frac{n}{2} – s, \frac{n}{2} – s} \cup K_{2, 2}\), where \(1 \leq k \leq \frac{n}{2} – 1\);(ii) For any two positive integers \(p_1\) and \(p_2\) satisfying \(n = p_1 + p_2\), if \(G\) does not belong to some easily recognizable classes of exceptional graphs, \(\|V_1| – |V_2\| \leq 2\) and \(d_G(x) + d_G(y) = \frac{n-1}{2}\) for every pair \(x \in V_1\) and \(y \in V_2\) of nonadjacent vertices of \(G\), then \(G\) can be partitioned into two vertex-disjoint paths \(P_{1}\) and \(P_{2}\) of order \(p_1\) and \(p_2\), respectively.These results also lead to new sufficient conditions for the existence of a Hamilton path in a bipartite graph.

Ana Breda1, Antonio Breda D’Azevedo1, Roman Nedela2
1Dep. of Math., University of Aveiro, Aveiro, Portugal,
2nst. of Math., Slovak Acad. of Scj., Banské Bystrica, Slovakia
Abstract:

In this paper we compute the chirality group, the chirality index and the smallest regular coverings of the chiral Coxeter maps, the toroidal orientably regular maps described in Coxeter and Moser monograph [H.S.M.Coxeter and W.O.J.Moser,Generation and Relations Discrete Group(4th ed.),Springer-varlag,Berlin,1984]. We also compute the greatest regular maps covered by chiral Coxeter maps.

Debdas Mishra1, Pratima Panigrahi1
1Department of Mathematics Indian Institute of Technology, Kharagpur 721302
Abstract:

We observe that a lobster with diameter at least five has a unique path \(x_0, x_1, \ldots, x_{m}\) (called the central path) such that \(x_p\) and \(x_m\) are adjacent to the centers of at least one \(K_{1,s}\), \(s > 0\), and besides adjacencies in the central path each \(x_i\), \(1 \leq i \leq m-1\), is at most adjacent to the centers of some \(K_{1,s}\), \(s \geq 0\). In this paper we give graceful labelings to some new classes of lobsters with diameter at least five, in which the degree of the vertex \(x_m\) is odd and the degree of each of the remaining vertices on the central path is even. The main idea used to obtain these graceful lobsters is to form a diameter four tree \(T(L)\) from a lobster \(L\) of certain type, give a graceful labeling to \(T(L)\) and finally get a graceful labeling of \(L\) by applying component moving and inverse transformations.

Suh-Ryung Kim1, Ji Yeon Park2
1Department of Mathematics Education Seoul National University, Seoul 151-742, Korea
2Department of Mathematics Kyung Hee University, Seoul 130-701, Korea
Abstract:

A graph \(G = (V, E)\) is said to be super edge-magic if there exists a one-to-one correspondence \(A\) from \(V \cup E\) onto \(\{1, 2, 3, \ldots, |V| + |E|\}\) such that \(\lambda(V) = \{1, 2, \ldots, |V|\}\) and \(\lambda(x) + \lambda(xy) + \lambda(y)\) is constant for every edge \(xy\).In this paper, given a positive integer \(k\) (\(k \geq 6\)), we use the partitions of \(k\) having three distinct parts to construct infinitely many super edge-magic graphs without isolated vertices with edge magic number \(k\). Especially, we use this method to find graphs with the maximum number of edges among the super edge-magic graphs with \(v\) vertices. In addition, we investigate whether or not some interesting families of graphs are super edge-magic.

Ortrud R.Oellermann1, Charlene D.Pawluck1, Anna Stokke1
1The University of Winnipeg, 515 Portage Avenue Winnipeg, MB R3B 2E9, CANADA
Abstract:

A vertex \(w\) in a di(graph) \(G\) is said to resolve a pair \(u, v\) of vertices of \(G\) if the distance from \(u\) to \(w\) does not equal the distance from \(v\) to \(w\). A set \(S\) of vertices of \(G\) is a resolving set for \(G\) if every pair of vertices of \(G\) is resolved by some vertex of \(S\). The smallest cardinality of a resolving set for \(G\), denoted by \(dim(G)\), is called the metric dimension for \(G\).

We show that if \(G\) is the Cayley digraph \(Cay(\Delta : \Gamma)\) where \(\Delta = \{ (1, 0, 0), (0, 1, 0), (0, 0, 1) \}\) and \(\Gamma =\mathbb{Z}_m \oplus \mathbb{Z}_n \oplus \mathbb{Z}_k\) with \(m \leq n \leq k\), then \(dim(G) = n\) if \(m < n\) and improve known upper bounds if \(m = n\). We use these results to establish improved upper bounds for the metric dimension of Cayley digraphs of abelian groups that are expressed as a direct product of four or more cyclic groups. Lower bounds for Cayley digraphs of groups that are multiple copies of \(\mathbb{Z}_n\) are established.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;