Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Dr.Thomas Bier1, Peter @ Suresh Padmanabhan2
1Institut Sains Matematik Faculty of Science, University of Malaya and Kuliyyah of Science International Islamic University, Gombak Kuala Lumpur, Malaysia
2Institut Sains Matematik Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
Abstract:

In this paper, we look at generalizations of Stirling numbers which arise for arbitrary integer sequences and their \(k\)-th powers. This can be seen as a complementary strategy to the unified approach suggested in [9]. The investigations of [3] and [14] present a more algebraically oriented approach to generalized Stirling numbers.

In the first and second sections of the paper, we give the corresponding formulas for the generalized Stirling numbers of the second and first kind, respectively. In the third section, we briefly discuss some examples and special cases, and in the last section, we apply the square case to facilitate a counting approach for set partitions of even size.

Jian-Liang Wu1, Ping Wang2, Anthony Hilton3
1School of Mathematics, Shandong University Jinan, Shandong, 250100, P. R. China
2Department of Mathematics, Statistics and Computer Science St. Francis Xavier University, Antigonish, Nova Scotia, Canada
3Department of Mathematics, University of Reading, Whiteknights, P.O. Box 220, Reading, RG6 2AX, Great Britain
Abstract:

In this paper, we give two sufficient conditions for a graph to be type \(1\) with respect to the total chromatic number and prove the following results:

(i) If \(G\) and \(H\) are of type \(1\), then \(G \times H\) is of type \(1\);

(ii) If \(\varepsilon(G) \leq v(G) + \frac{3}{2}\Delta(G) – 4\), then \(G\) is of type \(1\).

Michael D.Hirschhorn1, James A.Sellers2
1 School of Mathematics UNSW Sydney 2052 Australia
2Department of Mathematics Penn State University 107 Whitmore Laboratory University Park, PA 16802 USA
Abstract:

We prove several results dealing with various counting functions for partitions of an integer into four squares of equal parity. Some are easy consequences of earlier work, but two are new and surprising. That is, we show that the number of partitions of \(72n+ 60\) into four odd squares (distinct or not) is even.

Jill R.Faudree1, Ronald J.Gould2
1University of Alaska Fairbanks airbanks AK 99775
2Emory University Atlanta GA 30322
Abstract:

We prove that if \(G\) is a simple graph of order \(n \geq 3k\) such that \(|N(x) \cup N(y)| \geq 3k\) for all nonadjacent pairs of vertices \(x\) and \(y\), then \(G\) contains \(k\) vertex-independent cycles.

C.F. X.de Mendonca1, E.F. Xavier2, J. Stolfi3, L. Faria4, C.M. H.de Figueiredo5
1Departamento de Informatica, UEM, Maring4, PR, Brazil.
2Instituto de Computagao, Unicamp, Campinas, SP, Brazil.
3Instituto de Computagao, Unicamp, Campinas, SP, Brazil.
4Departamento de Matematica, FFP-UERJ, So Gongalo, RJ, Brazil.
5Instituto de Matemética and COPPE Sistemas e Computacio, UFRJ, Rio de Janeiro, RJ, Brazil.
Abstract:

The non-planar vertex deletion or vertex deletion \(vd(G)\) of a graph \(G = (V, E)\) is the smallest non-negative integer \(k\) such that the removal of \(k\) vertices from \(G\) produces a planar graph. Hence, the maximum planar induced subgraph of \(G\) has precisely \(|V| – vd(G)\) vertices. The problem of computing vertex deletion is in general very hard; it is NP-complete. In this paper, we compute the non-planar vertex deletion for the family of toroidal graphs \(C_n \times C_m\).

C.C. Lindner1, Antoinette Tripodi2
1Department of Discrete and Statistical Sciences Auburn University Auburn, Alabama 36849 USA
2Departimento di Matematica Universita di Messina 98166 Messina. ITALIA
Abstract:

Let \(K_4\backslash e=…\). If we remove the “diagonal” edge, the result is a \(4\)-cycle. Let \((X,B)\) be a \(K_4\backslash e\) design of order \(n\); i.e., an edge-disjoint decomposition of \(K_n\) into copies of \(K_4\backslash e\). Let \(D(B)\) be the collection of “diagonals” removed from the graphs in \(B\) and \(C(B)\) the resulting collection of \(4\)-cycles. If \(C_2(B)\) is a reassembly of these edges into \(4\)-cycles and \(L\) is the collection of edges in \(D(B)\) not used in a \(4\)-cycle of \(C_2(B)\), then \((X, (C_1(B) \cup C_2(B)), L)\) is a packing of \(K_n\) with \(4\)-cycles and is called a metamorphosis of \((X,B)\). We construct, for every \(n = 0\) or \(1\) (mod \(5\)) \(> 6\), \(n \neq 11\), a \(K_4\backslash e\) design of order \(n\) having a metamorphosis into a maximum packing of \(K_n\) with \(4\)-cycles. There exists a maximum packing of \(K_n\) with \(4\)-cycles, but it cannot be obtained from a \(K_4\backslash e\) design.

Hong-Jian Lai1, Deying Li2, Jingzhong Mao3, Mingquan Zhan4
1Department of Mathematics West Virginia University, Morgantown, WV 26506, USA
2School of Information Renmin University of China, Beijing 100872, P.R. China
3Department of Mathematics Central China Normal University, Wuhan, P. R. China
4Department of Mathematics Millersville University, Millersville, PA 17551, USA
Abstract:

We investigate the supereulerian graph problems within planar graphs, and we prove that if a \(2\)-edge-connected planar graph \(G\) is at most three edges short of having two edge-disjoint spanning trees, then \(G\) is supereulerian except for a few classes of graphs. This is applied to show the existence of spanning Eulerian subgraphs in planar graphs with small edge cut conditions. We also determine several extremal bounds for planar graphs to be supereulerian.

Stephen Hartke1
1Department of Mathematics Rutgers University Hill Center – Busch Campus 110 Frelinghuysen Road Piscataway, NJ 08854-8019
Abstract:

Given an acyclic digraph \(D\), the phylogeny graph \(P(D)\) is defined to be the undirected graph with \(V(D)\) as its vertex set and with adjacencies as follows: two vertices \(x\) and \(y\) are adjacent if one of the arcs \((x,y)\) or \((y,x)\) is present in \(D\), or if there exists another vertex \(z\) such that the arcs \((x,z)\) and \((y,z)\) are both present in \(D\). Phylogeny graphs were introduced by Roberts and Sheng [6] from an idealized model for reconstructing phylogenetic trees in molecular biology, and are closely related to the widely studied competition graphs. The phylogeny number \(p(G)\) for an undirected graph \(G\) is the least number \(r\) such that there exists an acyclic digraph \(D\) on \(|V(G)| + r\) vertices where \(G\) is an induced subgraph of \(P(D)\). We present an elimination procedure for the phylogeny number analogous to the elimination procedure of Kim and Roberts [2] for the competition number arising in the study of competition graphs. We show that our elimination procedure computes the phylogeny number exactly for so-called “kite-free” graphs. The methods employed also provide a simpler proof of Kim and Roberts’ theorem on the exactness of their elimination procedure for the competition number on kite-free graphs.

Yang Yuansheng1, Xu Xirong2, Xi Yue2, Qiao Jing1
1Department of Computer Science Dalian University of Technology Dalian, 116024, P. R. China
2 Department of Computer Science Dalian University of Technology Dalian, 116024, P. R. China
Abstract:

A multiple shell \(MS\{n_1^{t_1}, n_2^{t_2}, \dots, n_r^{t_r}\}\) is a graph formed by \(t_i\) shells of widths \(n_i\), \(1 \leq i \leq r\), which have a common apex. This graph has \(\sum_{i=1}^rt_i(n_i-1) + 1\) vertices. A multiple shell is said to be balanced with width \(w\) if it is of the form \(MS\{w^t\}\) or \(MS\{w^t, (w+1)^s\}\). Deb and Limaye have conjectured that all multiple shells are harmonious, and shown that the conjecture is true for the balanced double shells and balanced triple shells. In this paper, the conjecture is proved to be true for the balanced quadruple shells.

Sergey Kitaev1, Toufik Mansour2
1 MATEMATIK, CHALMERS TEKNISKA HOGSKOLA OCH GOTEBORGS UNIVERSITET, 412 96 GO6reBorG, SWEDEN
2LABRI, UNIVERSITE BORDEAUX 1, 351 COURS DE LA LIBERATION 33405 TALENCE CEDEX, FRANCE
Abstract:

In [BabStein], Babson and Steingrimsson introduced generalized permutation patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the permutation. In \([Kit1]\), Kitaev considered simultaneous avoidance (multi-avoidance) of two or more 3-patterns with no internal dashes, that is, where the patterns correspond to contiguous subwords in a permutation. There, either an explicit or a recursive formula was given for all but one case of simultaneous avoidance of more than two patterns. In this paper, we find the exponential generating function for the remaining case. Also, we consider permutations that avoid a pattern of the form \(x – yz\) or \(xy – z\) and begin with one of the patterns \(12\ldots k\), \(k(k-1)\ldots 1\), \(23\ldots 1k\), \((k-1)(k-2)\ldots 1k\), or end with one of the patterns \(12\ldots k\), \(k(k-1)\ldots 1\), \(1k(k-1)\ldots 2\), \(k12\ldots (k-1)\). For each of these cases, we find either the ordinary or exponential generating functions or a precise formula for the number of such permutations. Besides, we generalize some of the obtained results as well as some of the results given in \([Kit3]\): we consider permutations avoiding certain generalized \(3\)-patterns and beginning (ending) with an arbitrary pattern having either the greatest or the least letter as its rightmost (leftmost) letter.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;