Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Atsuhiro Nakamoto1, Katsuhiro Ota2, Mamoru Watanabe3
1Department of Mathematics Osaka Kyouiku University, Japan
2Department of Mathematics Keio University, Japan
3Department of Computer Science and Mathematics Kurashiki University of Science and the Arts, Japan
Abstract:

For a \(3\)-vertex coloring, a face of a triangulation whose vertices receive all three colors is called a vivid face with respect to it. In this paper, we show that for any triangulation \(G\) with \(n\) faces, there exists a coloring of \(G\) with at least \( \frac{1}{2}n\) faces and construct an infinite series of plane triangulations such that any \(3\)-coloring admits at most \(\frac{1}{5}(3n- 2)\) vivid faces.

Jianping Roth1, Wendy Myrvold2
1Creo Inc., Vancouver
2University of Victoria
Abstract:

A projective plane is equivalent to a disk with antipodal points identified. A graph is projective planar if it can be drawn on the projective plane with no crossing edges. A linear time algorithm for projective planar embedding has been described by Mohar. We provide a new approach that takes \(O(n^2)\) time but is much easier to implement. We programmed a variant of this algorithm and used it to computationally verify the known list of all the projective plane obstructions.

One application for this work is graph visualization. Projective plane embeddings can be represented on the plane and can provide aesthetically pleasing pictures of some non-planar graphs. More important is that it is highly likely that many problems that are computationally intractable (for example, NP-complete or #P-complete) have polynomial time algorithms when restricted to graphs of fixed orientable or non-orientable genus. Embedding the graph on the surface is likely to be the first step for these algorithms.

Osamu Shimabukuro1
1Graduate School of Mathematics Kyushu University 33 Fukuoka 812-8581, Japan
Abstract:

We consider the nonexistence of \(e\)-perfect codes in the Johnson scheme \(J(n, w)\). It is proved that for each \(J(2w + 3p, w)\) for \(p\) prime and \(p \neq 2, 5\), \(J(2w + 5p, w)\) for \(p\) prime and \(p \neq 3\), and \(J(2w + p^2, w)\) for \(p\) prime, it does not contain non-trivial \(e\)-perfect codes.

Jia Shen1, Heping Zhang1
1Department of Mathematics, Lanzhou University, Lanzhou Gansu 730000, P. R. China
Abstract:

A graph \(G\) is called \(f\)-factor-covered if every edge of \(G\) is contained in some \(f\)-factor. \(G\) is called \(f\)-factor-deleted if \(G\) – \(e\) contains an \(f\)-factor for every edge \(e\). Babler proved that every \(r\)-regular, \((r – 1)\)-edge-connected graph of even order has a \(1\)-factor. In the present article, we prove that every \(2r\)-regular graph of odd order is both \(2m\)-factor-covered and \(2m\)-factor-deleted for all integers \(m\), \(1 \leq m \leq r – 1\), and every \(r\)-regular, \((r – 1)\)-edge-connected graph of even order is both \(m\)-factor-covered and \(m\)-factor-deleted for all integers \(m\), \(1 \leq m \leq \left\lfloor \frac{r}{2} \right\rfloor\).

Sergio R.Canoy,Jr.1, Gilbert B.Cagaanan 2
1Department of Mathematics CSM, MSU-lligan Institute of Technology 9200 Lligan City, Philippines
2Related Subjects Department SET, MSU-lIligan Institute of Technology 9200 Tligan City, Philippines
Abstract:

The convex hull of a subset \(A\) of \(V(G)\), where \(G\) is a connected graph, is defined as the smallest convex set in \(G\) containing \(A\). The hull number of \(G\) is the cardinality of a smallest set \(A\) whose convex hull is \(V(G)\). In this paper, we give the hull number of the composition of two connected graphs.

M.M.M. Jaradat1
1Department of Mathematics Yarmouk University Irbid-Jordan
Abstract:

The basis number \(b(G)\) of a graph \(G\) is defined to be the least integer \(d\) such that \(G\) has a \(d\)-fold basis for its cycle space. In this paper, we investigate the basis number of the direct product of theta graphs and paths.

Miho Kimura 1, Sanpei Kageyama1
1Department of Mathematics, Graduate School of Education Hiroshima University, Higashi-Hiroshima 739-8524, Japan
Abstract:

Large sets of balanced incomplete block (\(BIB\)) designs and resolvable \(BIB\) designs are discussed. Some recursive constructions of such large sets are given. Some existence results, in particular for practical \(k\), are reviewed.

Hendrik Van Maldeghem1, Valerie Ver Gucht2
1Dopartinent: of Pure Mathematics and Computer Algebra Ghent University aalglann 2. 9000 Gent BELGIUM
2Departinent of Applied Mathematics, Biometrics aud Process Control Ghent. University Coupure Links 653. 9000 Gent BELGIUM
Abstract:

We consider point-line geometries having three points on every line, having three lines through every point (\(bi\)-\(slim\; geometries\)), and containing triangles. We give some (new) constructions and we prove that every flag-transitive such geometry either belongs to a certain infinite class described by Coxeter a long time ago, or is one of three well-defined sporadic ones, namely, The Möbius-Kantor geometry on \(8\) points, The Desargues geometry on \(10\) points,A unique infinite example related to the tiling of the real Euclidean plane in regular hexagons.We also classify the possible groups.

P. Katerinis1
1Athens University of Economics Department of Informatics 76 Patission Str., Athens 10434, Greece
Abstract:

Let \(G\) be a simple graph such that \(\delta(G) \geq \lfloor\frac{|V(G)|}{2}\rfloor + k\), where \(k\) is a non-negative integer, and let \(f: V(G) \to \mathbb{Z}^+\) be a function having the following properties (i)\(\frac{d_G(x)}{2}-\frac{k+1}{2}\leq f(x)\leq \frac{d_G(x)}{2}+\frac{k+1}{2}\) for every \(x \in V(G)\), (ii)\(\sum\limits_{x\in V(G)}f(x)=|E(G)|\). Then \(G\) has an orientation \(D\) such that \(d^+_D(x) = f(x)\), for every \(x \in V(G)\).

Ji Young Choi1, Jonathan D.H.Smith2
1DEPARTMENT OF MATHEMATICS, SHIPPENSBURG UNIVERSITY, SHIPPENSBURG, PA 17257, USA
2DEPARTMENT OF MATHEMATICS, Lowa STATE UNiversiTY, Ames, IA 50011, USA
Abstract:

The so-called multi-restricted numbers generalize and extend the role of Stirling numbers and Bessel numbers in various problems of combinatorial enumeration. Multi-restricted numbers of the second kind count set partitions with a given number of parts, none of whose cardinalities may exceed a fixed threshold or “restriction”. The numbers are shown to satisfy a three-term recurrence relation. Both analytic and combinatorial proofs for this relation are presented. Multi-restricted numbers of both the first and second kinds provide connections between the orbit decompositions of subsets of powers of a finite group permutation representation, in which the number of occurrences of elements is restricted. An exponential generating function for the number of orbits on such restricted powers is given in terms of powers of partial sums of the exponential function.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;