Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Jian-Liang Wu1, Daiqiang Hu2
1 Shandong University of Science and Technology Jinan,250031, P. R. China
2 Department of Mathematics, Jinan University, Guangzhou, 510632, P. R. China
Abstract:

It is proved that the total chromatic number of any series-parallel graphs of degree at least \(3\) is \(\Delta(G)+1\).

Brendan D.McKay1, Konrad Piwakowski2, Stanislaw P.Radziszowski 3
1Deptartment of Computer Science Australian National University Canberra, ACT 0200, Australia
2Dept. of Foundations of Informatics Technical University of Gdarisk 80-952 Gdarisk, Poland
3Depariment of Computer Science Rochester Institute of Technology Rochester, NY 14623, USA
Abstract:

We show that, in any coloring of the edges of \(K_{36}\), with two colors, there exists a triangle in the first color or a monochromatic \(K_{10}-e\) (\(K_{10}\) with one edge removed) in the second color, and hence we obtain a bound on the corresponding Ramsey number, \(R(K_3, K_{10}-e) \leq 38\). The new lower bound of \(37\) for this number is established by a coloring of \(K_{36}\) avoiding triangles in the first color and \(K_{10}-e\) in the second color. This improves by one the best previously known lower and upper bounds. We also give the bounds for the next Ramsey number of this type, \(42 \leq R(K_3, K_{11}-e) \leq 47\).

Xuegang Chen1,2, Liang Sun3, Alice McRae4
1Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081, P.R. China
2The College of Information Science and Engineering, Shandong University of Science and Technology, Taian, Shandong Province 271019, P.R. China
3Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081, P.R. China;
4Department of Computer Science, Appalachian State University, Boone, North Carolina
Abstract:

A subset \(S\) of \(V(G)\) is called a dominating set if every vertex in \(V(G) – S\) is adjacent to some vertex in \(S\). The domination number \(\gamma(G)\) of \(G\) is the minimum cardinality taken over all dominating sets of \(G\). A dominating set \(S\) is called a tree dominating set if the induced subgraph \(\langle S\rangle\) is a tree. The tree domination number \(\gamma_{tr}(G)\) of \(G\) is the minimum cardinality taken over all minimal tree dominating sets of \(G\). In this paper, some exact values of tree domination number and some properties of tree domination are presented in Section [2]. Best possible bounds for the tree domination number, and graphs achieving these bounds are given in Section [3]. Relationships between the tree domination number and other domination invariants are explored in Section [4], and some open problems are given in Section [5].

Junbin Wei1, Bolian Liu2
1Department of Applied Mathematics, Guangdong University of Technology, Guangzhou, 510090,People’s Republic of China
2Department of Mathematics, South China Normal University, Guangzhou,510631,People’s Republic of China
Abstract:

If \(G\) is a tricyclic Hamiltonian graph of order \(n\) with maximum degree \(3\), then \(G\) has one of two forms, \(X(q,r,s,t)\) and \(Y(q,r,s,t)\), where \(q+r+s+t=n\). We find the graph \(G\) with maximal index by first identifying the graphs of each form having maximal index.

Xiangwen Li1, Bing Wei 2, Fan Yang2
1Department of Mathematics Central China Normal University, Wuhan 430079, China
2Institute of Systems Science Chinese Academy of Sciences, Beijing 100080, China
Abstract:

Let \(G = (V_1, V_2; E)\) be a bipartite graph with \(|V_1| = |V_2| = n \geq 2k\), where \(k\) is a positive integer. Let \(\sigma'(G) = \min\{d(u)+d(v): u\in V_1, v\in V_2, uv \not\in E(G)\}\). Suppose \(\sigma'(G) \geq 2k + 2\). In this paper, we will show that if \(n > 2k\), then \(G\) contains \(k\) independent cycles. If \(n = 2k\), then it contains \(k-1\) independent \(4\)-cycles and a \(4\)-path such that the path is independent of all the \(k-1\) \(4\)-cycles.

A. Sapounakis 1, P. Tsikouras1
1Department of Informatics University of Piraeus 80, Karaoli and Dimitriou 18534 Pireaus, Greece.
Abstract:

New results on the enumeration of noncrossing partitions with \(m\) fixed points are presented, using an enumeration polynomial \(P_m(x_1, x_2, \ldots, x_m)\). The double sequence of the coefficients \(a_{m,k}\) of each \(x^k_i\) in \(P_m\) is endowed with some important structural properties, which are used in order to determine the coefficient of each \(x^k_ix^l_j\) in \(P_m\).

KM. Kathiresan1, R. Ganesan2
1Department of Mathematics Ayya Nadar Janaki Ammal College Sivakasi 626 124. INDIA
2Department of Mathematics Raja College of Engineering and Technology Madurai 625 020. INDIA.
Abstract:

This paper concerns a labeling problem of the plane graphs \(P_{a,b}\). We discuss the magic labeling of type \((1,1,1)\) and consecutive labeling of type \((1,1,1)\) of the graphs \(P_{a,b}\).

M. Cera1, A. Dianez 2, P. Garcia-Vazquez3, J.C. Valenzuela4
1E.U.LT. Agricola, Universidad de Sevilla, Spain.
2E.T.S. Arquitectura, Universidad de Sevilla, Spain.
3B.U.LT. Agricola, Universidad de Sevilla, Spain.
4E.P.S. Algeciras, Universidad de Cadiz, Spain.
Abstract:

In this note, we prove that the largest non-contractible to \(K^p\) graph of order \(n\) with \(\lceil \frac{2n+3}{3} \rceil \leq p \leq n\) is the Turán’s graph \(T_{2p-n-1}(n)\). Furthermore, a new upper bound for this problem is determined.

Michael A.Henning1, Ortrud R.Oellermann2
1Department of Mathematics, University of Natal Private Bag X01 Pietermaritzburg, 3209 South Africa
2Department of Mathematics, The University of Winnipeg 515 Portage Avenue, Winnipeg MB, R3B 2E9 Canada
Abstract:

If \(u\) and \(v\) are vertices of a graph, then \(d(u,v)\) denotes the distance from \(u\) to \(v\). Let \(S = \{v_1, v_2, \ldots, v_k\}\) be a set of vertices in a connected graph \(G\). For each \(v \in V(G)\), the \(k\)-vector \(c_S(v)\) is defined by \(c_S(v) = (d(v, v_1), d(v, v_2), \ldots, d(v, v_k))\). A dominating set \(S = \{v_1, v_2, \ldots, v_k\}\) in a connected graph \(G\) is a metric-locating-dominating set, or an MLD-set, if the \(k\)-vectors \(c_S(v)\) for \(v \in V(G)\) are distinct. The metric-location-domination number \(\gamma_M(G)\) of \(G\) is the minimum cardinality of an MLD-set in \(G\). We determine the metric-location-domination number of a tree in terms of its domination number. In particular, we show that \(\gamma(T) = \gamma_M(T)\) if and only if \(T\) contains no vertex that is adjacent to two or more end-vertices. We show that for a tree \(T\) the ratio \(\gamma_L(T)/\gamma_M(T)\) is bounded above by \(2\), where \(\gamma_L(G)\) is the location-domination number defined by Slater (Dominating and reference sets in graphs, J. Math. Phys. Sci. \(22 (1988), 445-455)\). We establish that if \(G\) is a connected graph of order \(n \geq 2\), then \(\gamma_M(G) = n-1\) if and only if \(G = K_{1,n-1}\) or \(G = K_n\). The connected graphs \(G\) of order \(n \geq 4\) for which \(\gamma_M(G) = n-2\) are characterized in terms of seven families of graphs.

Terry A.McKee1
1Department of Mathematics & Statistics Wright State University, Dayton, Ohio 45435, U.S.A.
Abstract:

The edges of a graph can be either directed or signed (\(2\)-colored) so as to make some of the even-length cycles of the underlying graph into alternating cycles. If a graph has a signing in which every even-length cycle is alternating, then it also has an orientation in which every even-length cycle is alternating, but not conversely. The existence of such an orientation or signing is closely related to the existence of an orientation in which every even-length cycle is a directed cycle.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;