Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Hong Feng1, Zhizheng Zhang2
1Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China
2Department of Mathematics, Luoyang Teachers’ College, Luoyang 4710022, China
Abstract:

The purpose of this article is to give combinatorial proofs of some binomial identities which were given by Z. Zhang.

Yang Yuansheng1, Lin Xiaohui1, Yu Chunyan1
1Department of Computer Science Dalian University of Technology Dalian, 116024, P. R. China
Abstract:

Given \(t\geq 2\) cycles \(C_n\) of length \(n \geq 3\), each with a fixed vertex \(v^i_0\), \(i=1,2,\ldots,t\), let \(C^(t)_n\) denote the graph obtained from the union of the \(t\) cycles by identifying the \(t\) fixed vertices (\(v^1_0 = v^2_0 = \cdots = v^t_0\)). Koh et al. conjectured that \(C^(t)^n\) is graceful if and only if \(nt \equiv 0, 3 \pmod{4}\). The conjecture has been shown true for \(t = 3, 6, 4k\). In this paper, the conjecture is shown to be true for \(n = 5\).

W. D.Gao1, J. Zhou2
1Department of Computer Science and Technology, University of Petroleum, Beijing, 102200, China
2Tsinghua High School, Beijing, 100084, China
Abstract:

Let \(G\) be a finite abelian group of exponent \(m\). By \(s(G)\) we denote the smallest integer \(c\) such that every sequence of \(t\) elements in \(G\) contains a zero-sum subsequence of length \(m\). Among other results, we prove that, let \(p\) be a prime, and let \(H = C_{p^{c_1}} \oplus \ldots C_{p^{c_l}}\) be a \(p\)-group. Suppose that \(1+\sum_{i=1}^{l}(p^{c_i}-1)=p^k\) for some positive integer \(k\). Then,\(4p^k – 3 \leq s(C_{p^k} \oplus H) \leq 4p^k – 2.\)

B.L. Hartnell1, P.D. Vestergaard2
1Department of Mathematics and Computing Science Saint Mary’s University Halifax, N.S. Canada B3H 3C3
2Department of Mathematics Aalborg University Fredrik Bajers Vej 7G DK-9220 Aalborg @ Denmark
Abstract:

A connected dominating set \(D\) of a graph \(G\) has the property that not only does \(D\) dominate the graph but the subgraph induced by the vertices of \(D\) is also connected. We generalize this concept by allowing the subgraph induced by \(D\) to contain at most \(k\) components and examine the minimum possible order of such a set. In the case of trees, we provide lower and upper bounds and a characterization for those trees which achieve the former.

Jian-Hua Yin1, Jiong-Sheng Li2, Guo-Liang Chen3
1Department of Mathematics Hainan University, Haikou, Hainan 570228, China
2Department of Mathematics University of Science and ‘Technology of China, Helci, Anhui 230026, China
3Department of Computer Science and ‘Technology University of Science and ‘Technology of China, Hefei, Anhui 230027, China
Abstract:

Let \(\sigma(K_{r,s}, n)\) denote the smallest even integer such that every \(n\)-term positive graphic sequence \(\pi = (d_1, d_2, \ldots, d_n)\) with term sum \(\sigma(\pi) = d_1 + d_2 + \cdots + d_n \geq \sigma(K_{r,s}, n)\) has a realization \(G\) containing \(K_{r,s}\) as a subgraph, where \(K_{r,s}\) is the \(r \times s\) complete bipartite graph. In this paper, we determine \(\sigma(K_{2,3}, n)\) for \(m \geq 5\). In addition, we also determine the values \(\sigma(K_{2,s}, n)\) for \(s \geq 4\) and \(n \geq 2[\frac{(s+3)^2}{4}]+5\).

Ghidewon Abay-Asmerom1, Richard Hammack2
1Department of Mathematics Virginia Commonwealth University Richmond, Virginia 23284-2041, USA
2Department of Mathematics Randolph-Macon College Ashland, Virginia 23005-5505, USA
Abstract:

Formulas for vertex eccentricity and radius for the tensor product \(G \otimes H\) of two arbitrary graphs are derived. The center of \(G \otimes H\) is characterized as the union of three vertex sets of form \(A \times B\). This completes the work of Suh-Ryung Kim, who solved the case where one of the factors is bipartite. Kim’s result becomes a corollary of ours.

Xuebin Zhang1
1 Department of Mathematics, Nanjing Normal University Nanjing, China, 210097
Abstract:

Let \(v, k,\lambda\) and \(n\) be positive integers. \((x_1, x_2, \ldots, x_k)\) is defined to be \(\{(x_i, x_j) : i \neq j, i,j =1,2,\ldots,k\},\) in which the ordered pair \((x_i, x_j)\) is called \((j-i)\)-apart for \(i > j\) and \((k+j-i)\)-apart for \(i > j\), and is called a cyclically ordered \(k\)-subset of \(\{x_1, x_2, \ldots, x_k\}\).

A perfect Mendelsohn design, denoted by \((v, k, \lambda)\)-PMD, is a pair \((X, B)\), where \(X\) is a \(v\)-set (of points), and \(B\) is a collection of cyclically ordered \(k\)-subsets of \(X\) (called blocks), such that every ordered pair of points of \(X\) appears \(t\)-apart in exactly \(\lambda\) blocks of \(B\) for any \(t\), where \(1 \leq t \leq k-1\).

If the blocks of a \((v, k, \lambda)\)-PMD for which \(v \equiv 0 \pmod{k}\) can be partitioned into \(\lambda(v-1)\) sets each containing \(v/k\) blocks which are pairwise disjoint, the \((v, k, \lambda)\)-PMD is called resolvable, denoted by \((v, k, \lambda)\)-RPMD.

In the paper [14], we have showed that a \((v, 4, 1)\)-RPMD exists for all \(v \equiv 0 \pmod{4}\) except for \(4, 8\) and with at most \(49\) possible exceptions of which the largest is \(336\).

In this article, we shall show that a \((v, 4, 1)\)-RPMD for all \(v \equiv 0 \pmod{4}\) except for \(4, 8, 12\) and with at most \(27\) possible exceptions of which the largest is \(188\).

Sandi Klavzar1
1Department of Mathematics and Computer Science PeF, University of Maribor Korogka 160, SI-2000 Maribor, Slovenia
Abstract:

The independence number of Cartesian product graphs is considered. An upper bound is presented that covers all previously known upper bounds. A construction is described that produces a maximal independent set of a Cartesian product graph and turns out to be a reasonably good lower bound for the independence number. The construction defines an invariant of Cartesian product graphs that is compared with its independence number. Several exact independence numbers of products of bipartite graphs are also obtained.

F. Aguilo1, E. Simo2, M. Zaragoza2
1 Dept. de Matematica Aplicada IV Universitat Politécnica de Catalunya
2Dept. de Matematica Aplicada IV Universitat Politécnica de Catalunya
Abstract:

Multi-loop digraphs are widely studied mainly because of their symmetric properties and their applications to loop networks. A multi-loop digraph, \(G = G(N; s_1, \ldots, s_\Delta)\) with \(1 \leq s_1 < \cdots < s_\Delta \leq N-1\) and \(\gcd(N, s_1, \ldots, s_\Delta) = 1\), has set of vertices \(V ={Z}_N\) and adjacencies given by \(v \mapsto v + s_i \mod N, i = 1, \ldots, \Delta\). For every fixed \(N\), an usual extremal problem is to find the minimum value \[D_\Delta(N)=\min\limits_{s_1,\ldots,s_\Delta \in Z_N}(N; s_1, \ldots, s_\Delta)\] where \(D(N; s_1, \ldots, s_\Delta)\) is the diameter of \(G\). A closely related problem is to find the maximum number of vertices for a fixed value of the diameter. For \(\Delta = 2\), all optimal families have been found by using a geometrical approach. For \(\Delta = 3\), only some dense families are known. In this work, a new dense family is given for \(\Delta = 3\) using a geometrical approach. This technique was already adopted in several papers for \(\Delta = 2\) (see for instance [5, 7]). This family improves the dense families recently found by several authors.

Yin Jianhua1, Li Jiongsheng2, Mao Rui3
1Department of Computer Science and Technology University of Science and Technology of China, Hefei 230027, China
2Department of Mathematics University of Science and Technology of China, Hefei 230026, China
3Department of Mathematics and Information Science Guangxi University, Nanning 530004, China
Abstract:

Gould et al. (Combinatorics, Graph Theory and Algorithms, Vol. 1 (1999), 387-400) considered a variation of the classical Turén-type extremal problems as follows: for a given graph \(H\), determine the smallest even integer \(\sigma (H,n)\) such that every \(n\)-term positive graphic sequence \(\pi = (d_1, d_2, \ldots, d_n)\) with term sum \(\sigma(\pi) = d_1 + d_2 + \cdots + d_n \geq \sigma(H,n)\) has a realization \(G\) containing \(H\) as a subgraph. In particular, they pointed out that \(3n – 2 \leq \sigma(K_{4} – e, n) \leq 4n – 4\), where \(K_{r+1} – e\) denotes the graph obtained by removing one edge from the complete graph \(K_{r+1}\) on \(r+1\) vertices. Recently, Lai determined the values of \(\sigma(K_4 – e, n)\) for \(n \geq 4\). In this paper, we determine the values of \(\sigma(K_{r+1} – e, n)\) for \(r \geq 3\) and \(r+1 \leq n \leq 2r\), and give a lower bound of \(\sigma(K_{r+1} – e, n)\). In addition, we prove that \(\sigma(K_5 – e, n) = 5n – 6\) for even \(n\) and \(n \geq 10\) and \(\sigma(K_5 – e, n) = 5n – 7\) for odd \(n\) and \(n \geq 9\).

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;