
Ars Combinatoria
ISSN 0381-7032 (print), 2817-5204 (online)
Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.
Information Menu
- Research article
- Full Text
- Ars Combinatoria
- Volume 065
- Pages: 65-74
- Published: 31/10/2002
In this paper, we shall classify the self-complementary graphs with minimum degree exactly \(2\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 065
- Pages: 33-37
- Published: 31/10/2002
A graphical partition of the even integer \(n\) is a partition of \(n\) where each part of the partition is the degree of a vertex in a simple graph and the degree sum of the graph is \(n\). In this note, we consider the problem of enumerating a subset of these partitions, known as graphical forest partitions, graphical partitions whose parts are the degrees of the vertices of forests (disjoint unions of trees). We shall prove that
\[gf(2k) = p(0) + p(1) + p(2) + \cdots + p(k-1)\]
where \(g_f(2k)\) is the number of graphical forest partitions of \(2k\) and \(p(j)\) is the ordinary partition function which counts the number of integer partitions of \(j\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 065
- Pages: 39-64
- Published: 31/10/2002
We make further progress towards the forbidden-induced-subgraph characterization of the graphs with Hall number \(\leq 2\). We solve several problems posed in [4] and, in the process, describe all “partial wheel” graphs with Hall number \(\geq 2\) with every proper induced subgraph having Hall number \(\leq 2\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 065
- Pages: 21-32
- Published: 31/10/2002
A radio labeling of a connected graph $G$ is an assignment of distinct, positive integers to the vertices of \(G\), with \(x \in V(G)\) labeled \(c(x)\), such that
\[d(u, v) + |c(u) – c(v)| \geq 1 + diam(G)\]
for every two distinct vertices \(u,v\) of \(G\), where \(diam(G)\) is the diameter of \(G\). The radio number \(rn(c)\) of a radio labeling \(c\) of \(G\) is the maximum label assigned to a vertex of \(G\). The radio number \(rn(G)\) of \(G\) is \(\min\{rn(c)\}\) over all radio labelings \(c\) of \(G\). Radio numbers of cycles are discussed and upper and lower bounds are presented.
- Research article
- Full Text
- Ars Combinatoria
- Volume 065
- Pages: 3-20
- Published: 31/10/2002
Dudeney’s round table problem was proposed about one hundred years ago. It is already solved when the number of people is even, but it is still unsettled except for only a few cases when the number of people is odd.
In this paper, a solution of Dudeney’s round table problem is given when \(n = p+2\), where \(p\) is an odd prime number such that \(2\) is the square of a primitive root of \(\mathrm{GF}(p)\), \(p \equiv 1 \pmod{4}\), and \(3\) is not a quadratic residue modulo \(p\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 064
- Pages: 301-318
- Published: 31/07/2002
In this paper, we characterize the potentially \(C_k\)-graphic sequence for \(k = 3, 4, 5\). These characterizations imply several theorems due to P. Erdős, M. S. Jacobson, and J. Lehel [1], R. J. Gould, M. S. Jacobson, and J. Lehel [2], and C. H. Lai [5] and [6], respectively.
- Research article
- Full Text
- Ars Combinatoria
- Volume 064
- Pages: 289-299
- Published: 31/07/2002
Bailey, Cheng, and Kipnis [3] developed a method for constructing trend-free run orders of factorial experiments called the generalized fold-over method (GFM). In this paper, we use the GFM of constructing run orders of factorial experiments to give a systematic method of constructing magic squares of higher order.
- Research article
- Full Text
- Ars Combinatoria
- Volume 064
- Pages: 271-287
- Published: 31/07/2002
In this paper, we focus on the identification of Latin interchanges in Latin squares that are the direct product of Latin squares of smaller orders. The results we obtain on Latin interchanges will be used to identify critical sets in direct products. This work is an extension of research carried out by Stinson and van Rees in \(1982\).
- Research article
- Full Text
- Ars Combinatoria
- Volume 064
- Pages: 265-269
- Published: 31/07/2002
A \((g,k; \lambda)\)-difference matrix over the group \((G, o)\) of order \(g\) is a \(k\) by \(g\lambda\) matrix \(D = (d_{ij})\) with entries from \(G\) such that for each \(1 \leq i < j \leq k\), the multiset \(\{d_{il}\) o \(d_{jl}^{-1} \mid 1 \leq l \leq g\lambda\}\) contains every element of \(G\) exactly \(\lambda\) times. Some known results on the non-existence of generalized Hadamard matrices, i.e., \((g,g\lambda; \lambda)\)-difference matrices, are extended to \((g, g-1; \lambda)\)-difference matrices.
- Research article
- Full Text
- Ars Combinatoria
- Volume 064
- Pages: 259-263
- Published: 31/07/2002
The notion of convexity in graphs is based on the one in topology: a set of vertices \(S\) is convex if an interval is entirely contained in \(S\) when its endpoints belong to \(S\). The order of the largest proper convex subset of a graph \(G\) is called the convexity number of the graph and is denoted \(con(G)\). A graph containing a convex subset of one order need not contain convex subsets of all smaller orders. If \(G\) has convex subsets of order \(m\) for all \(1 \leq m \leq con(G)\), then \(G\) is called polyconvex. In response to a question of Chartrand and Zhang [3], we show that, given any pair of integers \(n\) and \(k\) with \(2 \leq k < n\), there is a connected triangle-free polyconvex graph \(G\) of order \(n\) with convexity number \(k\).