Ars Combinatoria

ISSN 0381-7032 (print), 2817-5204 (online)

Ars Combinatoria is the oldest Canadian Journal of Combinatorics, established in 1976. The journal is dedicated to advancing the field of combinatorial mathematics through the publication of high-quality research papers. From 2024 onward, it publishes four volumes per year in March, June, September and December. Ars Combinatoria has gained recognition and visibility in the academic community and is indexed in renowned databases such as MathSciNet, Zentralblatt, and Scopus. The Scope of the journal includes Graph theory, Design theory, Extremal combinatorics, Enumeration, Algebraic combinatorics, Combinatorial optimization, Ramsey theory, Automorphism groups, Coding theory, Finite geometries, Chemical graph theory but not limited.

Teresa W.Haynes1, Stephen T.Hedetniemi2, Michael A.Henning 3, Debra J.Knisley4
1Department of Mathematics East Tennessee State University Johnson City, TN 37614 USA
2Department of Computer Science Clemson University Clemson, SC 29634 USA
3University of Natal Private Bag X01, Scottsville Pietermaritzburg, 3209 South Africa
4Department of Mathematics East Tennessee State University Johnson City, TN 37614 USA
Abstract:

For a graph \(G = (V,E)\), a set \(S \subseteq V\) is \(total\; irredundant\) if for every vertex \(v \in V\), the set \(N[v]- N[S – \{v\}]\) is not empty. The \(total \;irredundance\; number\) \(ir_t(G)\) is the minimum cardinality of a maximal total irredundant set of \(G\). We study the structure of the class of graphs which do not have any total irredundant sets; these are called \(ir_t(0)\)-graphs. Particular attention is given to the subclass of \(ir_t(0)\)-graphs whose total irredundance number either does not change (stable) or always changes (unstable) under arbitrary single edge additions. Also studied are \(ir_t(0)\)-graphs which are either stable or unstable under arbitrary single edge deletions.

Yoshimi Egawa1, Katsuhiro Ota2
1Department of Applied Mathematics Science University of Tokyo Sinjuku-ku, Tokyo, 162-8601, JAPAN
2Department of Mathematics Keio University Kohoku-ku, Yokohama, 223-8522, JAPAN
Abstract:

Let \(n_1, n_2, \ldots, n_k\) be integers of at least two. Johansson gave a minimum degree condition for a graph of order exactly \(n_1 + n_2 + \cdots + n_k\) to contain \(k\) vertex-disjoint paths of order \(n_1, n_2, \ldots, n_k\), respectively. In this paper, we extend Johansson’s result to a corresponding packing problem as follows. Let $G$ be a connected graph of order at least \(n_1 + n_2 + \cdots + n_k\). Under this notation, we show that if the minimum degree sum of three independent vertices in \(G\) is at least:

\[3(\lfloor \frac{n_1}{2}\rfloor+\lfloor \frac{n_2}{2}\rfloor+ \ldots +\lfloor \frac{n_k}{2}\rfloor)\]

then \(G\) contains \(k\) vertex-disjoint paths of order \(n_1, n_2, \ldots, n_k\), respectively, or else \(n_1 = n_2 = \cdots = n_e = 3\), or \(k = 2\) and \(n_1 = n_2 = \text{odd}\). The graphs in the exceptional cases are completely characterized. In particular, these graphs have more than \(n_1 + n_2 + \cdots + n_k\) vertices.

C. Balbuena1, A. Carmona1
1Departament de Matematica Aplicada If] Universitat Politécnica de Catalunya
Abstract:

In this work, first, we present sufficient conditions for a bipartite digraph to attain optimum values of a stronger measure of connectivity, the so-called superconnectivity. To be more precise, we study the problem of disconnecting a maximally connected bipartite (di)graph by removing nontrivial subsets of vertices or edges. Within this framework, both an upper-bound on the diameter and Chartrand type conditions to guarantee optimum superconnectivities are obtained. Secondly, we show that if the order or size of a bipartite (di)graph is small enough then its vertex connectivity or edge-connectivity attain their maximum values. For example, a bipartite digraph is maximally edge-connected if \(\delta^+(x)+\delta^+(y)\geq \lceil\frac{n+1}{2}\rceil\) for all pair of vertices \(x, y\) such that \(d(x,y) \geq 4\). This result improves some conditions given by Dankelmann and Volkmann in [12] for the undirected case.

Stephan Foldes1, Alexander Lawrenz1
1RUTCOR, Rutgers University, 640 Bartholomew Road, Piscataway, NJ 08903-5062,
Abstract:

The convex polyhedron of all real-valued monotone functions defined on a finite poset is an unbounded variant of the order polytope described by Stanley. If the undirected covering graph of the poset is acyclic, then the lattice of non-empty faces of this polyhedron is a Boolean lattice. In every other case, both semimodularity and dual semimodularity fail.

Rachid Cherifi1, Sylvain Gravier2, Ismail Zighem3
1GERAD and Département de mathématiques et de génie industriel Ecole Polytech- nique de Montréal C.P. 6079, Succursale ” Centre-ville” Montréal, Québec, Canada, H3C 3A7.
2C.N.R.S., Laboratoire Leibniz, 46 avenue Félix Viallet, 38031 Grenoble Cedex 1 (France)
3Université Joseph Fourier, Laboratoire Leibniz, 46 avenue Félix Viallet, 38031 Greno- ble Cedex 1 (France)
Abstract:

In a paper of Cockayne et al., the authors establish an upper and a lower bound for the dominating number of the complete grid graph \(G_{n,n}\), of order \(n^2\). Namely, they proved a “formula”, and cited two questions of Paul Erdős. One of these questions was “Can we improve the order of the difference between lower and upper bounds from \(\frac{n}{5}\) to \(\frac{n}{2}\)?”. Our aim here is to give a positive answer to this question.

Hong Wang1
1Department of Mathematics The University of Idaho Moscow, ID 83844
Abstract:

Let \(D = (V_1, V_2; A)\) be a directed bipartite graph with \(|V_1| = |V_2| = n \geq 2\). Suppose that \(d_D(x) + d_D(y) \geq 3n\) for all \(x \in V_1\) and \(y \in V_2\). Then, with one exception, \(D\) contains two vertex-disjoint directed cycles of lengths \(2s\) and \(2t\), respectively, for any two positive integers \(s\) and \(t\) with \(s+t \leq n\).

Marcia R.Cerioli1, Jayme L.Szwarcfiter2
1Universidade Federal do Rio de Janeiro, Instituto de Matematica and COPPE, Caixa Postal 68530, 21945-970, Rio de Janeiro, RJ, Brasil.
2Universidade Federal do Rio de Janeiro, Instituto de Matematica, Nicleo de Computacao Eletrénica and COPPE, Caixa Postal 2324, 20001-970, Rio de Janeiro, RJ, Brasil.
Abstract:

The edge clique graph of a graph \(G\) is one having as vertices the edges of \(G\), two vertices being adjacent if the corresponding edges of \(G\) belong to a common clique.

Roberto B. Corcino1
1Math Department Univ. of the Philippines Diliman, Quezon City, 1101 Philippines
Abstract:

Recently, Hsu and Shiue [10] obtained a kind of generalized Stirling number pairs with three free parameters and proved some of its properties. Here, some properties analogous to those of ordinary Stirling numbers are investigated, viz. horizontal recurrence relations, vertical recurrence relations, rational generating function, and explicit formulas. Furthermore, a kind of infinite sum which is useful in some combinatorial applications of the generalized Stirling numbers, is evaluated.

Guillermo Duran 1, Min Chih Lin1
1Departamento de Computaci6n Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires
Abstract:

Clique graphs of several classes of graphs have been already characterized. Trees, interval graphs, chordal graphs, block graphs, clique-Helly graphs are some of them. However, no characterization of clique graphs of circular-arc graphs and some of their subclasses is known. In this paper, we present a characterization theorem of clique graphs of Helly circular-arc graphs and prove that this subclass of circular-arc graphs is properly contained in the intersection between proper circular-arc graphs, clique-Helly circular-arc graphs and Helly circular-arc graphs. Furthermore, we prove properties about the \(2^{\text{nd}}\) iterated clique graph of this family of graphs.

W.S. Ng1
1Institute of Mathematical Sciences University of Malaya 50603 Kuala Lumpur Malaysia
Abstract:

Let \(g: \mathbb{F}^m \to \mathbb{F}\) be a linear function on the vector space \(\mathbb{F}^m\) over a finite field \(\mathbb{F}\). A subset \(S \subsetneqq \mathbb{F}\) is called \(g\)-thin iff \(g(S^m) \subsetneqq \mathbb{F}\). In case \(\mathbb{F}\) is the field \(\mathbb{Z}_p\) of odd prime order, if \(S\) is \(g\)-thin and if \(m\) divides \(p-1\), then it is shown that \(|S| \leq \frac{p-1}{m}\). We also show that in certain cases \(S\) must be an arithmetic progression, and the form of the linear function \(g\) can be characterized.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;